Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Researchers at Harvard University have made several small mechanical devices powered by heart muscle harvested from rats. The mechanical devices include pumps, a device that “walks,” and one that swims. The scientists made the novel machines to study the behavior of muscles and provide a platform for testing heart drugs. But one day these devices could be used as parts of new types of robots that can change shape.

The research, featured in the current issue of Science, began as an attempt to grow working muscle tissue to patch holes in congenitally defective hearts, or to replace dead tissue after a heart attack. In the course of this work, Adam Feinberg, a postdoctoral researcher in the lab of Harvard biomedical-engineering professor Kevin Kit Parker, found that if patterned correctly and applied to carefully shaped sheets of plastic, the muscle could be used to make the plastic bend and twist in various ways.

In one example, Feinberg made a rectangular strip of plastic that curls up on itself, with the diameter of the resulting tube decreasing, then increasing again, as the muscle repeatedly contracts and relaxes. The researchers say that the device could serve as a pump. Another strip of plastic opens and closes like a pair of pinchers at a rate determined by electrical signals sent to the device. A curled triangular piece of plastic walks across the bottom of a petri dish as muscle tissue repeatedly contracts, and another triangular sheet, with a different arrangement of heart-muscle cells, mimics the movement of a fish’s tail to swim through a solution.

To grow heart muscle in the lab that contracts in a regular beating rhythm, it’s necessary to arrange the cells so that they are mechanically and electrically connected. They must also be oriented correctly. To do this, the researchers created micropatterns of proteins. These proteins create “cues” for rat muscle cells deposited on the plastic, guiding their alignment. Once the cells are deposited on a surface patterned with the proteins, they orient themselves to form a working tissue, Parker says.

A thin plastic serves as both a substrate for the tissue and a way of causing the devices to spring back to a certain shape in between contractions of the tissue. Parker envisions these devices one day being incorporated into octopuslike robots that can squeeze through small openings but also grip and manipulate objects and propel themselves along.

In their present form, however, the devices will have limited usefulness in robotics. For one thing, the beating muscles only survive for a few weeks, even when fed with a constant supply of nutrients, including glucose, which serves as the fuel for the muscles. But future designs could mimic natural heart tissue in more detail to extend longevity. For example, the researchers may also try constructing a three-dimensional tissue, rather than the flat arrangement they have now. Previous experiments have suggested that three-dimensional structures may be key to the survival of the cells.

Gain the insight you need on energy at EmTech MIT.

Register today

0 comments about this story. Start the discussion »

Credit: Science

Tagged: Biomedicine, energy, robots, heart, cellular, muscle, biomechanical energy

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »