Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Weissleder is currently testing the nanoparticle sensors using a research tool called a micro-NMR. Ultimately, he and the other T2 Biosystems researchers hope to develop a portable, commercial, handheld system that could be used at a patient’s bedside or in an ambulance. The system works the same way as MRI but with much smaller components, says David Lee, another of the company’s cofounders and the director of engineering at Analog Devices. “Instead of having coils for [radio-frequency] detection and magnets on the centimeter scale, the idea is to build them on the micrometer scale,” he says. “The electronics in a cell phone are not too different from what you’d want in a detector.” Lee says that making such a small detector is a matter of design, not basic research.

Developing a smaller detecting system is key to the company’s long-term goal of enlisting the nanoparticles to monitor cancer and chronic diseases like diabetes using implantable devices, says Jacks. Michael Cima, also a T2 Biosystems cofounder, is developing small silicone implants that contain the magnetic nanoparticles and are permeable to biomarkers circulating in the body. (See “Real-Time Tumor-Monitoring Rod.”) Such an implant could be inserted into a tumor during a needle biopsy.

A cancer patient’s progress is currently monitored with infrequent MRI scans to determine if tumors are shrinking. With an implant, clinicians could take readings frequently and easily using a handheld device that could provide information including how metabolically active a tumor is and whether the drugs are reaching it. After a tumor seems to have gone away, the implant could be monitored for molecular signs that it might be recurring. Or a diabetes patient with an implant could use a handheld device to monitor her glucose levels without having to prick a finger.

2 comments. Share your thoughts »

Credit: Ralph Weissleder, Harvard Center for Molecular Imaging Research

Tagged: Business, MIT, nanotechnology, diagnostics, nanoparticles, MRI, virus, magnetics

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me