Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The collection of images taken by the scanner is then processed onboard the aircraft in real time, and the data is automatically sent via satellite to a ground station, where it is incorporated into a geographic information system or map package. For the current fire missions, researchers are using Google Earth as their visualization tool. The data is displayed as an array of colors based on their intensity. The temperature ranges might be displayed as red, green, and blue, for example, with the hottest objects colored red. The system’s ability to continuously send images of the fire allows researchers to better predict its next move. This helps fire fighters determine where to deploy resources.

The entire sensor package weighs less than 300 pounds and fits under the wing of an unmanned aircraft called Ikhana. Built by General Atomics Aeronautical Systems, Ikhana was acquired by NASA’s Dryden Flight Research Center in November 2006. The Santa Barbara mission was the first for the fire-mapping system, but already the researchers are pushing its limits by demonstrating how the unmanned vehicle can collect data continuously for up to 24 hours. NASA hopes to continue using the system for earth-science and atmospheric-science data-collection missions.

“We are trying to augment current capabilities with unmanned aircraft and put them in situations where we wouldn’t normally put a manned aircraft, such as dangerous circumstances or night flights at low altitude,” says Hinkley. But he says that it will easily be 8 to 10 years before large UAVs, such as Ikhana, will be able to fly over fires on a regular basis, partly because of cost and man power. Currently the Federal Aviation Administration (FAA) requires that a pilot guide the plane from the ground, even though the plane could be programmed to fly on its own. In addition, the FAA hasn’t established rules and regulations as to how such planes would fit in the national airspace.

Small, unmanned, aerial vehicles could very soon be used at local incidents, but the sensor technology has to be scaled down to be used on these planes, says Ambrosia.

For the foreseeable future, the U.S. Forest Service will continue to use manned aircraft. Once testing of the new thermal-imaging technology is complete, which is expected within a year, the U.S. Forest Service plans to put the system on its manned aircraft.

0 comments about this story. Start the discussion »

Credit: NASA

Tagged: Computing, NASA, imaging, sensor, mapping, thermal

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me