Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

At the onset of a wildfire, the United States Forest Service must deploy its resources as quickly and efficiently as possible to contain and stop the fire. Part of this process involves flying manned missions over the fire to map its location, hotspots, and the direction in which it’s spreading. Now a new thermal-imaging sensor developed by NASA Ames Research Center (ARC) is making it easier for researchers to get an accurate picture of the ongoing fires in Santa Barbara. The system is still in development, but the researchers say that it could ultimately save resources, property, and lives.

The U.S. Forest Service and NASA are in the midst of testing the new technology on a remotely piloted unmanned aerial vehicle (UAV) flying over wildfires in California. The flight missions began on August 16, capturing images of a fire near Zaca Lake in Santa Barbara County, and they will continue once a week through September. The purpose of the missions is not only to test the sensor, but also to demonstrate the benefits of UAVs in wildfire tracking, their ability to handle and process data, and their ability to communicate this in real time, via satellite, to receiving stations on the ground.

The key to fighting wildfires is accurately knowing the positional information of a fire–not just taking an image of the fire, but understanding where the fire is and how it’s behaving. “If you have one pixel [in an image] that shows there is a thermal heat source there, you need to know the latitude and longitude of that pixel,” says Everett Hinkley, the National Remote Sensing Program manager at the U.S. Forest Service and coprincipal investigator on the project. To do so, the researchers use a scanner with a highly sensitive thermal mapping sensor designed by NASA.

The forest service’s current system is similar but much less sophisticated: it only measures two portions of the light spectrum. The lack of data on other parts of the spectrum hinders the system’s ability to precisely distinguish temperature gradients. The image files captured by the sensor must then be put on a “thumb drive” and dropped out of the aircraft through a tube as it flies near the command station, or the aircraft must land so that the data can be given to a colleague who performs the analysis.

The new equipment includes a 12-channel spectral sensor that runs from the visible spectrum into the reflected infrared and mid-infrared spectrum. Two of these channels were built specifically for the thermal portion of the spectrum and were highly calibrated to be able to distinguish hot spots. This is what makes it an effective wildfire imaging sensor, says Vince Ambrosia, an engineer at NASA ARC and the principal investigator of the fire missions.

1 comment. Share your thoughts »

Credit: NASA

Tagged: Computing, NASA, imaging, sensor, mapping, thermal

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me