Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Texas Instruments (TI), based in Dallas, has developed a battery-gauge chip that can tell mobile-phone users down to the minute how much talking or standby time they have left–a degree of accuracy much greater than that provided by existing battery gauges. Such a precise gauge could allow smart-phone developers to squeeze more energy out of the battery, potentially increasing by half or more the amount of time that it lasts between charges.

The new TI gauge is more accurate than today’s gauges, which measure a battery’s voltage, because it measures a number of electrical properties. Voltage-only-based gauges are erratic and unreliable because voltage doesn’t fall steadily as the battery is discharged. What’s more, the voltage changes as the battery ages and experiences different temperatures. It also varies with different power demands on the battery.

The TI gauge is more accurate–to within 1 percent of the actual energy left in the battery–because it measures electrical properties besides voltage. Most important, it measures a feature of battery cells that is at the root of the voltage changes that make today’s gauges unreliable. This feature, called impedance, is a measure of the opposition to current flow, and it changes with temperature, battery age, and the power demands on a battery.

Knowing the changes in impedance allows the chip to reinterpret voltage changes, keeping it from being fooled by voltage changes caused by these factors. For example, when a person makes a call, the voltage drops as soon as the phone transmits the signal. A conventional gauge would interpret this as a sudden drop in the amount of energy left in the battery, which could engage battery-saving measures in power-management software. The new gauge would recognize that the cell still has plenty of energy. The approach also works with low voltages caused by cell age.

The new gauge chip, which is incorporated either into the circuit boards of a phone or directly into a battery pack, could be particularly useful in smart phones. Some phone users have to assume that after the gauge has reached the halfway point, the battery could die at any moment. What’s more, poor battery gauges make it difficult to employ power-management software on phones that could extend battery capacity. Power-management software slows down processors, turns off the camera’s flash, and dims the screen to save the battery once it’s low. It may also save data and shut down applications just before the battery dies. Such software, however, may engage power-saving measures too soon if it relies on an inaccurate battery gauge, resulting in sluggish device performance while there is still plenty of charge.

1 comment. Share your thoughts »


Tagged: Energy, batteries, mobile phones, efficiency, chip

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me