Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Researchers at the University of California, Santa Barbara (UCSB), have designed a silicon-based laser that emits ultrashort pulses of light at high frequencies–two characteristics that are crucial if silicon-based lasers are to become practical. Eventually, the researchers hope that the new laser could replace other, more expensive lasers in optical communication networks. It could even lead to faster computers that shuttle data around using light instead of electricity.

Modern telecommunications networks use three distinct gadgets–lasers, modulators, and detectors–to produce, encode, and detect light. Currently, all three are made of nonsilicon semiconductors, such as indium phosphide, that are difficult to mass-produce; as a consequence, they tend to be expensive and bulky. But if they could instead be made from silicon, they could be integrated on individual chips, says John Bowers, professor of electrical and computer engineering at UCSB. Devices that currently cost hundreds of dollars each could then be made in bulk for pennies, and the cost of bandwidth would plummet. The one snag in the plan is that it’s hard to make silicon produce light.

In September 2006, however, the UCSB team and Intel announced a new hybrid laser that, although it still used indium phosphide, was built on a silicon base. (See “Bringing Light to Silicon.”) The manufacture of the device began with a wafer that consisted of a layer of silicon dioxide sandwiched between two layers of silicon. In the top layer of silicon, the researchers etched a channel, called a waveguide, within which light bounced back and forth. To the top of the wafer, they bonded strips of indium phosphide, using a layer of glass glue only 25 atoms thick. Adding this additional layer, says Bowers, isn’t much different from adding layers of other materials to silicon, something that’s regularly done in today’s manufacturing process.

To turn the laser on, the researchers applied electrical current to metal contacts on top of the indium phosphide. Indium phosphide is a naturally light-emitting material, so the strips of it on top of the wafer produced photons that got trapped in the channel below, bouncing back and forth along the length of the silicon waveguide. In certain materials, that bouncing is enough to amplify normal light into laser light, but not in silicon. So the device was designed to let a small amount of light, called the evanescent tail, sneak back into the indium phosphide, where it was amplified. The benefit of this design is that it avoids the costly fabrication of an indium-phosphide waveguide.

For the new laser, which is described in a recent issue of Optics Express, the researchers made their design slightly more complex. “We needed to turn it into a device with multiple sections,” explains Alexander Fang, a graduate student who worked on the project. He says that he had to make sure the lengths of the cavities were precise, and that regions that amplified light and absorbed light were electrically isolated from each other.

0 comments about this story. Start the discussion »

Credit: Peter Allen, University of California, Santa Barbara

Tagged: Computing, silicon, lasers, light, telecommunication

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me