Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A new scheme for creating a compact device that efficiently converts methanol into hydrogen could make it practical to incorporate fuel cells into laptop computers and other portable electronics. Such a device could allow a laptop to run for 50 hours and be recharged instantly by swapping in a small fuel pack.

Fuel cells powered by methanol or another liquid fuel have long been held up as a solution to the ever-growing energy demands of portable electronics. But fuel cells that convert methanol directly into electricity are bulky. Fuel cells that run on hydrogen gas are much more compact, but the hydrogen, unlike liquid fuel, takes up too much space.

An ideal compromise would be a system that uses a hydrogen fuel cell but stores the hydrogen in liquid form as methanol until just before it’s needed. The hydrogen would be freed in a series of steps in a fuel processor that include heating the fuel to vaporize it, heating water for steam reforming, and further reactions for removing carbon monoxide. But the challenge has been to make them both small and efficient.

At last week’s American Chemical Society (ACS) meeting in Boston, Ronald Besser, a professor of chemical engineering at Stevens Institute of Technology, in Hoboken, NJ, described a new system that could solve the problem.

Unlike in previous designs, in which the different processing steps are built into successive flat layers, Besser proposes a cylindrical design in which the layers form concentric tubes. In such a design, heat spreads in all directions from a combustor at the center, facilitating the necessary reactions. To keep each layer at the optimal temperature, he would incorporate aerogels, a relatively new type of insulation. To decrease costs, he’s proposing to use advanced plastics for several of the layers.

The fuel processor for generating the 20 watts of power needed for a laptop or a large radio would be 4.8 centimeters in diameter and 10 centimeters long. Adding the fuel cell and fuel storage could mean another 20 centimeters of length, Besser estimates, but the processor would still be small enough to fit in a laptop. Considering the whole package, the system would store about 1,000 watt hours per kilogram; the very best batteries reach only 300 watt hours per kilogram, and laptop batteries can be about half of this. Besser says that such a system could potentially provide 5 to 10 times the amount of energy as a battery.

Jamie Holladay, a session chair at the ACS conference, is optimistic that the system can work. However, he says that his own research suggests that incorporating a plastic layer may not be possible, since it could deteriorate over time. Instead, it might be possible to use a metal or ceramic outer layer.

7 comments. Share your thoughts »

Credit: Ronald Besser, Stevens Institute of Technology

Tagged: Energy, energy, electronic gadgets, fuel cells

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me