Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Electrodes that send a flow of ionized air over the surface of a silicon chip could make the cooling fans in computers and laptops much more effective. Researchers at Purdue University and Intel found that a device that generates an ionic breeze keeps computer chips 25 ºC cooler than fans alone. By enabling the use of smaller fans, the device could lead to more-compact laptops.

As microchips get crowded with more and more components, today’s cooling methods will no longer be adequate. Currently, heat is drawn away from chips by metal heat sinks–panels attached to arrays of fins or prongs that maximize heat-dissipating surface area. The fans in a computer cool the heat sinks and blow out the hot air. But air cooling “has been stretched to the limit in its capacity for heat removal,” says Suresh Garimella, a mechanical-engineering professor at Purdue. And besides, fans can be bulky and noisy.

The new device is small and can be integrated directly into a computer chip. By placing it at specific “hot spots” on a chip, engineers could enhance the cooling fan’s effectiveness in those areas. This could lead to smaller fans that work just as well as current fans, says Garimella, and thus to thinner, smaller laptops. The eventual goal is to develop cooling technologies for small notebooks and handheld computers, says Rajiv Mongia, an Intel research engineer who worked with the Purdue researchers on the new device.

Garimella and his colleagues built their experimental cooling system on a mock computer chip. The system consists of two electrodes–a stainless-steel wire that acts as the positively charged anode, and a copper tape that serves as the cathode–that are separated by a few millimeters.

Applying a voltage across the electrodes makes electrons in the air collide with oxygen and nitrogen molecules, stripping them of electrons and creating positively charged ions. The ions move toward the negatively charged cathode, dragging surrounding air molecules with them and creating a breeze. The researchers found that while a fan blowing over a heat sink cooled the surface of their chip to about 60 ºC, adding the ion breeze cooled it down to 35 ºC.

Garimella says that because the device uses strips of metal as electrodes, as opposed to sharper tips, the ion breeze sweeps a larger portion of the chip–although it does not generate enough air pressure to cool the chip without the aid of a fan.

The ion breeze faces stiff competition from other experimental chip-cooling techniques. Computer makers have recently started to explore liquid cooling, in which a pump pushes water or another liquid through pipes. (Apple’s Mac Pro computers use this system.) But most liquid-cooling systems are complicated and increase manufacturing costs; the Purdue device could provide a cheaper alternative. “Our invention allows us to extend the performance of air cooling without having to switch to more aggressive and expensive methods such as liquid cooling,” Garimella says. “At the same time, we do not add any extra volume.”

2 comments. Share your thoughts »

Credit: Birck Nanotechnology Center

Tagged: Computing, Apple, Intel, electrodes, chip, cooling, Mac

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »