Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Researchers at the University of Texas are developing a microfluidics device that detects oral-cancer cells in 10 minutes and is simple and cheap enough for use in the dentist’s office. The device could be adapted to test for other cancers, including cervical cancer. It works well on cancer cells grown in the lab and is currently being tested on biopsies from oral-cancer patients.

Many oral cancers are painless or, in their early stages, resemble dental disease, so patients and doctors may overlook them, says Carter Van Waes, chief of head and neck surgery at the National Institute on Deafness and Other Communication Disorders. The National Cancer Institute estimates that, this year, 22,560 people will be diagnosed with oral cancer, and more than 5,000 will die of the disease. “Even though oral cancer is not common, it’s usually advanced when it’s diagnosed,” says Spencer Redding, chair of dental-diagnostic science at the University of Texas Health Science Center, in San Antonio. Redding is helping test the new device, which was developed by John McDevitt, professor of chemistry at the University of Texas at Austin.

“The goal is to identify patients earlier,” when the survival rate is about 90 percent, says Redding. Patients diagnosed in the later stages of the disease don’t respond well to treatment, and only about 50 percent survive. McDevitt and Redding envision a compact device that would be standard in dental offices. Any suspicious-looking sores in a patient’s mouth could be scraped and tested for signs of cancer while the patient is still in the dentist’s chair.

The device, made of acrylic, has a small reaction chamber fed and cleaned via tiny inlet and outlet channels. A solution of scrapings from a patient’s mouth enters through the inlet and is strained through a cell-catching filter. Caught cells are then flooded with a solution containing fluorescent protein tags. The tags stick to a protein, called a cancer biomarker, that’s made in much greater quantities by oral-cancer cells than by normal cells. Under a fluorescence microscope, cancer cells caught in the device have an intense green halo. The entire test can be performed in less than 10 minutes.

The test has the potential to be very cheap. Cells are exposed to a tiny volume of liquid–only about four microliters–and all cell preparation happens inside the device. Traditional methods for detecting cancer-cell biomarkers are expensive and complex and require trained technicians, so they are available only at hospitals with sophisticated equipment. At the moment, the results of the new test still have to be read under an external fluorescence microscope, but McDevitt’s lab is developing a small prototype machine that incorporates both the microfluidics device and a simplified fluorescence-imaging system.

1 comment. Share your thoughts »

Credit: McDevitt Research Labs, University of Texas

Tagged: Biomedicine, cancer, imaging, diagnostics, biomarkers, micrscope

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me