Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Researchers at Purdue University have engineered a tiny, wireless eye implant that monitors glaucoma by continuously measuring intraocular pressure–a primary risk factor for the disease. Scientists say that such an implant would help ophthalmologists catch and treat problematic spikes in pressure that would otherwise go unnoticed.

“People with glaucoma go to the doctor every six months to check their eye pressure,” says Pedro Irazoqui, an assistant professor of biomedical engineering at Purdue, who is leading the research. “But the problem is that pressure doesn’t spike within months: it spikes within hours, sometimes minutes. Once there’s a spike, there’s a limited amount of time you have to act before it does permanent damage to the optic nerve. We wanted to design a device that monitors pressure continuously, so that if there is a spike, we’d be guaranteed to catch it.”

Glaucoma is the second leading cause of blindness in the world after cataract. According to the Glaucoma Research Foundation, three million Americans have the disease, although only half know it. There are no outward symptoms other than perhaps a gradual loss of peripheral vision.

The disease itself is caused by a buildup of intraocular fluid, called aqueous humor, which drains from the pupil through a system of canals. In healthy people, this drainage system keeps eye pressure within a normal range–about 10 to 21 millimeters of mercury. People with glaucoma tend to have clogged canals, which causes a buildup in fluid, which in turn creates pressure within the eye that exceeds 21 millimeters of mercury. This elevated pressure, if left untreated, can permanently damage the optic nerve, leading to compromised vision and, in some cases, blindness.

If the disease is caught early enough, ophthalmologists can give patients drugs to relieve the pressure and stave off further damage. But regular examinations in a doctor’s office are inadequate for charting a glaucoma patient’s progress. “It’s not uncommon that a patient doesn’t have a spike in the office, and all of a sudden, you see glaucoma peaking,” says Shakeel Shareef, a glaucoma specialist and associate professor at the University of Rochester Eye Institute, who was not involved in the research. According to Shareef, a continuous monitoring device, like those used to measure an irregular heartbeat, would be a welcome tool.

Toward that end, Irazoqui and his colleagues have designed a tiny microchip, to be implanted between two layers of the eye. The sensor is designed to measure intraocular pressure and wirelessly transmit the data to a nearby computer. A doctor can then access the data and review it for possible warning signs. At present, Irazoqui’s team has engineered a prototype of the sensor, although he and his colleagues have yet to test it on animals. The researchers plan to present the details of their research later this month at the Engineering in Medicine and Biology Society’s conference in Lyon, France.

1 comment. Share your thoughts »

Credit: Babak Ziaie/Purdue University

Tagged: Biomedicine, sensor, disease, wireless, implant, vision, glaucoma

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me