Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The space shuttle’s thermal protection system is a combination of Reinforced Carbon-Carbon (RCC) on the wing leading edge, thermal blankets on the fuselage and thermal protective tiles covering the underside of the vehicle and nose cap. This system protects the spacecraft and its human occupants from the extreme heat of reentry into the Earth’s atmosphere. Without the RCC, blankets, and tiles covering the shuttle–the space shuttle Endeavour has more than 24,000 tiles–the structural integrity of the aluminum frame on the shuttle would be compromised. In 2003, the world witnessed a devastating disaster after the RCC on the port (left) wing of the space shuttle Columbia was damaged during launch. The damage went undetected and the shuttle, left with a compromised heat-resistant shield, lost structural integrity and broke apart during reentry.

NASA engineers used six 3-D scanners for their prelaunch inspections of Endeavour and plan to use them again when the shuttle returns. They will also use them for the ground maintenance of other spacecraft. The next step for the new scanner, says Lavelle, is to redesign it so that its components can withstand operations in space, and astronauts can use it to inspect the space shuttle during missions. Lavelle also says that there are many companies, which he declines to identify, interested in the 3-D scanner.

Aside from inspecting the space shuttle, the scanner is being used to evaluate thermal protection materials for a new crew exploration vehicle that NASA is developing. Engineers use the 3-D scanner to measure the materials both before and after they are tested in extreme environments; the difference between the two measurements indicates how well the material performed. Planetary rovers could also use the scanner to map the space around them in 3-D, helping them avoid collisions and better maneuver in unknown environments.

1 comment. Share your thoughts »

Credit: NASA

Tagged: Computing, NASA, diagnostics, wireless, mapping, thermal

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me