Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A major question is whether it’s safe to stimulate nerves in this way for long periods of time. So far, Richter and his colleagues have shown that auditory nerves in anesthetized gerbils can be stimulated with infrared laser radiation for up to six hours without damage. At present it’s not feasible to run the tests for longer, but Richter is planning long-term studies in animals with permanently implanted devices.

The researchers are also figuring out how to precisely control neuron activity with lasers. The ear encodes pitch and loudness not just by firing nerves in particular places, but also by modifying the rate at which they fire. So far, Richter has shown that laser radiation can reliably make neurons fire up to 250 times per second, which is comparable to the rate at which early-model conventional cochlear implants drive neurons.

Human trials are years away, but there are several ways in which infrared technology might be used to build a working cochlear implant. One is to use fiber optics instead of electrodes in an array inserted inside the cochlea, somewhat similarly to the way conventional cochlear implants now use electrodes. Early trials of such a system might involve replacing one or two electrodes of a conventional implant with fiber optics to test their effect. Another is to put an optical fiber bundle in front of the cochlea’s round window to stimulate auditory neurons without opening the cochlea. (The round window is a thin membrane in the cochlea that absorbs fluid displacement as sound waves travel through it.)

An even more futuristic possibility is to use gene therapy to make auditory neurons responsive to particular wavelengths of light. At MIT, Ed Boyden has been altering nerve cells’ genes so that they fire when exposed to one wavelength of light and stop firing when exposed to another. According to Richter, this approach would require less power to activate cells, which might be safer in the long run. Of course, this approach carries all the caveats that typically accompany gene therapy and would require a way to precisely deliver gene therapy to the relevant auditory cells.

“If proven safe and efficacious, optical stimulation could open up ultra-high density stimulation interfaces for the peripheral nervous system,” says Boyden. “The process of combining optics and neurons may also pave the way for many future innovations - moving beyond the ubiquitous electrode to new modalities of neural control.”

1 comment. Share your thoughts »

Credit: Steve Gschmeissner / Photo Researchers, Inc.

Tagged: Biomedicine, lasers, implant, infared, hearing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me