Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Researchers at Thomas Jefferson University Hospital, in Philadelphia, have developed software that integrates data from multiple imaging technologies to create an interactive 3-D map of the brain. The enhanced visualization gives neurosurgeons a much clearer picture of the spatial relationship of a patient’s brain structures than is possible with any single imaging methods. In doing so, it could serve as an advanced guide for surgical procedures, such as brain-tumor removal and epilepsy surgery.

The new imaging software collates data from different types of brain-imaging methods, including conventional magnetic resonance imaging (MRI), functional MRI (fMRI), and diffusion-tensor imaging (DTI). The MRI gives details on the anatomy, fMRI provides information on the activated areas of the brain, and DTI provides images of the network of nerve fibers connecting different brain areas. The fusion of these different images produces a 3-D display that surgeons can manipulate: they can navigate through the images at different orientations, virtually slice the brain in different sections, and zoom in on specific sections.

Currently, physicians typically view the images produced by MRI technologies individually, and they conceptually visualize what the images might look like combined. “Before this type of software package, I would put up an fMRI image and put up a regular MRI of the brain and try to match the two in my brain to try to get a 3-D sense of the right spot to make an incision,” says Ashwini Sharan, a neurosurgeon at the Jefferson Comprehensive Epilepsy Center.

There are some other software packages that allow a technician to take a single image and render a 3-D structure, says David Andrews, a neurosurgeon at Thomas Jefferson University Hospital. However, he says, no software package can take multiple images and provide as stunning a 3-D view of the tumor-fiber interface as the new software.

With the new software, surgeons are able to see the depth of the fibers going inside the tumor, shown as dashed lines, and the proximity of those on the outside, shown as solid lines. The lines are color-coded based on their depth; they range from dark red, which represents the deepest, to dark blue, which represents the shallowest.

In addition, the team of developers at Thomas Medical College, led by Song Lai, an associate professor of radiology and the director of MRI physics, built a light-oriented surface model to efficiently cast shadows from the fibers and further improve a physician’s ability to see the spatial relationship between the tumors and fiber tracks.

Having an interactive 3-D structure of the brain could be a critical tool for neurosurgeons in several ways. During a surgical procedure to remove a brain tumor, doctors must be careful not to tamper with the surrounding tissues, such as the fiber tracks that are vital to brain function. With the 3-D image, the surgeons could better understand the location and proximity of those fibers in relation to the tumor.

0 comments about this story. Start the discussion »

Credit: Song Lai, Thomas Jefferson University Hospital

Tagged: Biomedicine, software, imaging, brain, mapping, MRI, tumor, fMRI, brain map

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me