Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

As China’s star has risen, there’s been speculation about whether its expanding space program will trigger a space race with the United States. After all, Shenzhou spacecraft have twice carried taikonauts to orbit and back, and they might in principle support the manned moon mission that the Chinese claim they’ll carry out by 2026–and even, maybe, by 2017, one year before NASA now foresees a return to the lunar surface. Still, the next-generation CZ-5 Long March launchers necessary for a manned moon mission by China remain unfunded, and, in general, its space program has so far only repeated decades-old American and Russian achievements.

Meanwhile, attracting far less attention and operating on a far smaller budget, that other rising Asian giant, India, has also been ramping up its space program–and it is developing some novel, promising approaches. This spring, India’s then president, A.P.J. Abdul Kalam–a colorful scientist-technologist who loomed large from the success of his country’s early satellite launch missions, and then led its guided-missile program–laid out (via teleconferencing ) an ambitious vision of India’s future space efforts during his speech at a Boston University symposium.

Kalam told the international audience of space experts in Boston that, besides expanding its extensive satellite program, India now plans lunar missions and a reusable launch vehicle (RLV) that takes an innovative approach using a scramjet “hyperplane.” Kalam said that India understands that global civilization will deplete earthly fossil fuels in the 21st century. Hence, he said, a “space industrial revolution” will be necessary to exploit the high frontier’s resources. Kalam predicted that India will construct giant solar collectors in orbit and on the moon, and will mine helium-3–an incredibly rare fuel on Earth, but one whose unique atomic structure makes power generation from nuclear fusion potentially feasible–from the lunar surface. India’s scramjet RLV, Kalam asserted, will provide the “low-cost, fully reusable space transportation” that has previously “denied mankind the benefit of space solar-power stations in geostationary and other orbits.”

Talk of grand futuristic projects comes cheap, of course. Nevertheless, the Indian Space Research Organisation (ISRO) performed its first commercial launch in April, lofting an Italian gamma-ray observatory into orbit on its Polar Satellite Launch Vehicle. Next, in early 2008, the Chandraayan-1, India’s first lunar orbiter, will carry two NASA projects to search the moon’s surface for sites suitable for the proposed U.S. Moon Base. And at next year’s end, the first flight of the Hypersonic Technology Demonstrator Vehicle (HTDV), a demo for the scramjet RLV, is scheduled.

While this current spate of activity brings the country greater prominence, India’s space program is hardly a new development. In 1975, ISRO launched its first satellite, Aryabhata, on a Soviet rocket, and in 1980, India’s first home-built launcher, the SLV-3, successfully put a satellite into orbit. ISRO has continued with a series of larger satellites and rockets in the succeeding years. Rather than national prestige, the Indian focus has until recently been on entirely pragmatic applications that gave the most bang for its limited rupees: communications satellites to provide services to far-flung regions of a vast country with little existing communications infrastructure, meteorology packages (often carried on the same geosynchronous satellites that perform communications missions), and remote-sensing satellites to map India’s natural resources.

Now ISRO is moving beyond that focus on immediately practical space applications. In November 2006, Virender Kumar, counselor for space at India’s Washington, DC, embassy, told a forum on U.S.-India space relations at the Center for Strategic and International studies, “The time has come when you do have the feeling that you have accomplished a lot.” Following much discussion within India’s space-science community, Kumar continued, “They basically demanded that we go forward and do these exploration missions.”

1 comment. Share your thoughts »

Credit: Indian Space Research Organisation

Tagged: Computing, China, space, moon, India

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me