Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

However, Venter said that his approach would eliminate inherent biological traits that make extensive biological engineering tricky. For example, a nonessential metabolic process could suck away a molecular precursor needed for fuel production. In addition, said Venter, “existing organisms have a rapid ability to evolve. In synthetic biology, you don’t want a system that will self-evolve into something else. We want to eliminate those elements from the cell from the beginning.”

The genomic transfer technique is similar to nuclear transfer–used to clone Dolly the sheep–in which the nucleus of an adult cell is transferred into an egg. But getting the process to work in bacteria has been trickier. Scientists speculate that nuclear proteins transferred along with the DNA during nuclear transfer may help the process. Bacteria do not have a nucleus, and in this experiment, only DNA was transferred into the host cell. Researchers did this on purpose to show that only DNA was needed to successfully reprogram the host bacterium–a property that will be necessary when scientists are ready to transplant entirely synthetic genomes.

Scientists don’t fully understand how the genome transfer worked, particularly how the host genome disappeared. And it’s not yet clear how well the technique will work in other bacteria or in more-complex organisms. Most bacteria have a defense mechanism that chops up any foreign DNA that enters the cell, so scientists would need to find a way to block the DNA-degrading enzymes in each different species before they could successfully transplant foreign genomes into them.

0 comments about this story. Start the discussion »

Credit: Courtesy J. Craig Venter Institute

Tagged: Biomedicine, DNA, biofuel, genome, efficiency, bacteria, transplant

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me