Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Making a large, perfectly smooth, concave optical surface out of glass is an involved and expensive process. Very tiny flaws in the glass can make a mirror unusable. The containers that hold liquid mirrors, says Borra, don’t need precisely smooth surfaces and would be much cheaper to manufacture. Telescopes that rely on liquid mirrors would cost about 100 times less than glass-mirror telescopes of comparable size, says Borra.

“The forces of nature conspire to give the right shape,” Borra says of liquid mirrors, which need only be rotated to form a flawless reflective surface. As the mirror spins, centrifugal force and gravity pull the liquid into a smooth parabola. Unlike with a glass mirror, if the liquid is perturbed, it can move right back into shape.

Borra expects that a liquid-mirror telescope would be assembled on the moon by robotics. “A container holding the liquid will be sent to the moon and opened up like an umbrella,” he says of an imagined future system. A liquid-mirror telescope could not be put into orbit because gravity is necessary to form the optical surface–and because it would spill.

“There’s a tremendous amount of research to be done” to fine-tune the mirror, cautions Robin D. Rogers, a chemistry professor at the University of Alabama. He points out that there are hundreds of other ionic liquids that might have a better set of properties than those used in the Laval mirror.

“It may take 20 years before it’s built,” Borra says of his telescope. If it does come about, however, such a system could help cosmologists observe faint signals from when the universe was only a billion years old, “at that time when matter first assembled into stars, stars into galaxies,” says Borra.

9 comments. Share your thoughts »

Credit: Omar Seddiki (Univ. Laval)

Tagged: Communications, Robotics, robotics, NASA, space, telescope

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me