Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

In recent years, laboratory and animal studies have suggested that curcumin–the pigment that gives the Indian curry spice turmeric its bright-yellow hue–may have some power to kill tumors and clear the brain plaques that characterize Alzheimer’s disease.

But because curcumin is insoluble, it mostly passes through the gut without making it into the bloodstream. While doctors in the United States, Europe, and Asia have conducted more than two-dozen clinical trials using curcumin, most have required patients to swallow up to 12 grams, or even more, of curcumin every day. That’s a lot–even for the most ardent lovers of Indian food.

Now researchers at the Johns Hopkins University School of Medicine and the University of Delhi, in India, have invented curcumin-carrying nanospheres that could far more easily slip into the bloodstream.

Call it nanocurry–a marriage of 21st-century nanotechnology with an ancient ingredient from the East. The nanospheres open up the possibility that low doses of oral curcumin could be used far more widely in clinical trials, a key step toward getting the ingredient from the spice aisle to the pharmacist’s shelf.

Animal studies to determine whether nanocurcumin has any effect against pancreatic tumors in mice are expected to begin within weeks; the development of the particles was published in the Journal of Nanobiotechnology in April.

Anirban Maitra, a professor of pathology and oncology at Johns Hopkins, and his collaborators in Delhi–including his father, Amarnath Maitra, a professor of chemistry–used special polymers to synthesize tiny nanoparticles about 50 nanometers in diameter. The particles have hydrophobic interiors and hydrophilic exteriors. The hydrophobic component holds the curcumin, while the hydrophilic exteriors make the particles soluble. This way, they can pass easily from the gut to the bloodstream. Once in the blood, the curcumin leaks out as the polymers slowly degrade.

The Johns Hopkins team has already shown in laboratory experiments with pancreatic cancer cells that nanocurcumin retains its ability to activate key events that destroy tumors. What’s more, early animal studies have revealed that the nanoparticles are nontoxic, the team says.

There’s a big need for these little particles. Over the past five years, evidence of curcumin’s clinical potential has steadily mounted. Studies in the United States, India, and elsewhere have shown that curcumin can fight tumor growth in breast, colon, ovarian, and pancreatic cancers.

Curcumin has also shown promise beyond fighting cancer: earlier this year, researchers at Massachusetts General Hospital reported that in mice, curcumin cleared and reduced plaques associated with Alzheimer’s disease.

7 comments. Share your thoughts »

Credit: Anirban Maitra, Johns Hopkins University

Tagged: Biomedicine, cancer, nanotechnology, tumor, blood, Alzheimer’s

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me