Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A new technique that spots very faint signals in gene activity may one day help doctors better pinpoint the earliest signs of some diseases. Scientists at Harvard Medical School say they are able to detect low levels of gene expression with unprecedented sensitivity–an advantage that may allow geneticists to identify the activity of disease-related genes that until now have been obscured.

Picking out weak signals amid the normal din of genetic activity is no easy task. A single human cell contains more than 30,000 genes. At any given time, these genes are switched on or off depending on environmental factors, or in response to other genetic activity. As a gene is activated, it makes a copy, or multiple copies, of its DNA, and it passes these “instructions,” in the form of messenger RNA, to areas of the cell involved in protein synthesis. The cell then produces proteins based on the RNA blueprint.

Until now, researchers have been able to detect gene expression by imaging high levels of messenger RNA with techniques such as serial analysis of gene expression (SAGE) and microarray analysis. However, Jon Seidman, professor of genetics at Harvard Medical School, says that these technologies only provide half the picture. “When we label RNA with dye, the strong signals are obvious, and that’s good news; it has worked well with a number of diseases,” says Seidman. “The problem is, it captures some of the information but not all of it.”

Seidman and his colleagues have been keen on obtaining a more complete genetic profile of a rare heart condition, called hypertrophic cardiomyopathy. To do so, Seidman needed a method to detect messenger RNA at very low levels. So he and his colleagues developed polony-multiplex analysis of gene expression, or PMAGE, to increase the signal-to-noise ratio, bringing low-level gene activity to the foreground.

In a study published in Science, Seidman’s team took heart-tissue samples from two sources: a normal mouse, and a mouse with gene mutation to the heart disease. The researchers isolated messenger RNAs from each sample and converted each messenger RNA into complementary DNA sequences. They then split each double-stranded DNA molecule into a smaller fragment and attached molecular primers to either end of the fragment, creating a tag. Seidman mixed the genetic tags with magnetic nano beads. Through a polymerase chain reaction, the team cloned millions of the same DNA sequence tags on each bead. The result was an amplification of an otherwise weak genetic signal.

0 comments about this story. Start the discussion »

Credit: Jon Seidman

Tagged: Biomedicine, DNA, genetics, disease, tumor, RNA

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me