Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

An implanted device that detects seizure activity in the brain and shocks it away before it spreads could bring new hope to epilepsy patients. The device is part of a growing trend to treat neurological diseases resistant to traditional medication with small jolts of electricity rather than with drugs. Preliminary studies have shown that the device can stop seizures in some patients, and larger-scale studies are now under way.

A full 30 to 40 percent of epilepsy patients fail to find relief from anticonvulsant medications–a percentage that has not improved as new medications have entered the market over the past decade. Some of those patients can be treated with surgery targeting the part of the brain that triggers seizures. But this is not always effective, and not all patients are eligible: someone whose seizures originate in the part of the brain that generates language, for example, would be ineligible for surgery because it might damage his or her ability to speak.

A new device being developed by Neuropace, based in Mountain View, CA, could help these patients. An electrical stimulator, smaller than a playing card and curved in shape, is inserted into a hollowed-out part of the skull. (The procedure is modeled on that of the cochlear implant.) Two electrodes are then implanted into the troublesome part of the brain that triggers seizures. Surgeons locate this spot, known as the seizure focus, prior to surgery using a combination of brain imaging and electroencephalogram recordings (EEG), which measure brain activity from surface electrodes on the skull.

The electrodes monitor nearby neurons for signs of abnormal electrical activity. When they detect signs of an impending seizure, they emit an electrical pulse, blocking the hyperactive wave from spreading throughout the brain. “The idea is to stop the seizure before it occurs,” says Frank Fischer, chief executive officer at Neuropace.

The device, known as the responsive neurostimulation system is just one of a growing number of electrically based devices in development or already on the market. In 1997, the FDA approved the vagus nerve stimulator for epilepsy, which stimulates a nerve leading to the brain. The medical-device company Medtronic is currently sponsoring a trial of deep brain stimulation for use in epilepsy in which an electrode is implanted into a specific spot in the brain. The device is currently approved to treat Parkinson’s disease.

However, the sensing capability of the Neuropace device makes it different than other systems, says Fischer. Other devices deliver a constant stream of electrical pulses, while responsive neurostimulation system zaps the brain only when necessary. “People with a high level of seizure activity would only get a few minutes of therapy a day,” Fischer says. And unlike with vagus nerve stimulator, which can trigger a hoarse voice when turned on, with responsive neurostimulation system, patients can’t tell when the electrical pulses are delivered.

0 comments about this story. Start the discussion »

Credit: Neuropace

Tagged: Biomedicine, neuroscience, disease, implant, EEG, electrodes

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me