Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Researchers at Hokkaido University in Sapporo, Japan, have developed a new way to recreate the feel of flowing water in two virtual-reality simulations: one for fishing and another for kayaking.

Most research on virtual-touch technology, also known as haptics, has focused on giving the user the sensation that he or she is feeling solid objects. But to make truly immersive virtual-reality programs, liquids will need to be simulated too, says Yoshinori Dobashi, an associate professor at Hokkaido University and a researcher involved in the fishing and kayaking simulations.

However, mimicking fluids is a difficult task. The water in a river or lake moves in intricate patterns that can only be determined using complex mathematical formulas known as Navier-Stokes equations. “To compute the accurate force, we have to solve a complex nonlinear system of equations in real time,” Dobashi says. Those numbers also have to be constantly recalculated to keep up with the ever-changing movement of the water. “The computation of the force field has to be completed and updated within 1/500 of a second,” he notes. “This is almost impossible.”

Other researchers have attempted to recreate the feel of liquids. But real-time simulations were limited to two-dimensional models of fluids, Dobashi says, because 3-D models were thought to be too processor intensive to perform in real time. He claims that his simulation is more realistic because it considers three dimensions.

In order to make a 3-D system work in real time, Dobashi and his team created a model that approximates real-world forces acting on a fishing rod or kayak paddle by doing part of the math in advance of the simulation: the forces associated with different water velocities and different positions for the paddle or fishing lure were precalculated and saved in the software. Only the velocity of the water is calculated in real time, as the user moves the rod or paddle during the simulation. Once the software has determined the velocity, the associated forces are applied to the user’s hand.

To apply those forces, the fishing simulation uses a special device called the Spidar G. Created by Makoto Satoh at the Tokyo Institute of Technology’s Precision and Interface Lab, it looks much like a ping-pong ball suspended by wires. The user holds a stick that fits into the ball. As the virtual water ripples and flows, the ball and stick move to simulate the way the tip of the fishing rod would move in the real world. The virtual fisherman can control his or her fishing rod by moving the stick. An animation of the rod and lake appear on a computer screen.

0 comments about this story. Start the discussion »

Credit: Shoichi Hasegawa and Yoshinori Dobashi

Tagged: Computing, 3-D, video games, virtual reality

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »