Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

A 10-micrometer-thick silicon layer lies on top of the detector, and above that comes the electron-injecting part of the chip. In the injector, highly energized electrons pass through a magnetic iron layer, which filters out all electrons with a spin down. Spin-up electrons pass through the 10-micrometer silicon layer and go to the detector. In the detector, if the nickel-iron layer’s magnetic-field direction matches the spin direction, electrons go through to the silicon substrate, leading to a small current. But if the researchers flip the direction of the magnetic field in the nickel-iron layer, there is no current.

The key is the detector’s complex layered structure, which the researchers make using a special technique to deposit silicon on top of the nickel-iron layer. “It’s a very ingenious scheme to electrically generate and transport spins in silicon, [to] electrically detect the spins, and doing all of this on a chip,” says David Awschalom, a physics professor who studies semiconductor spintronics at the University of California, Santa Barbara.

Others believe that the work is an experimental demonstration of a principle but is not very practical. “What this paper shows is that spin can survive 10 microns, which is pretty neat,” says Stuart Parkin, director of the spintronics science and application center at IBM’s Almaden Research Center in San Jose, CA. “From an application point of view, it doesn’t really tell us how to make an interesting, useful device.”

One major issue is the tiny current output of the device, Parkin says. The researchers put three milliamperes in, and the output is in picoamperes, which is too small to be useful. Another problem is the special technique that the researchers use to make the device’s layered structure. This method is complicated and not at all compatible with current silicon fabrication, says Parkin.

But, says Crowell, this work marks the first time that spin has been measured in silicon, and that’s a great start toward silicon-based spintronics.

0 comments about this story. Start the discussion »

Credit: Jon Cox, University of Delaware

Tagged: Computing, silicon, chip, spintronics

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »