Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Today’s computers rely on moving and storing electronic charge in semiconductors. They ignore another property of electrons known as spin. Manipulating an electron’s spin, as opposed to manipulating its charge, is faster and takes much less energy. That means electronic circuits that store and process data using an electron’s spin would make computers faster, smaller, and more energy efficient.

While spintronic devices are easy to make using magnetic metals, to do so using semiconductors is challenging. So far, researchers have made spintronic devices from gallium arsenide, but making them from the far cheaper silicon has been difficult. Ian Appelbaum and his colleagues at the University of Delaware have now made the first silicon-based spintronic device, which they describe in this week’s Nature.

Appelbaum says that silicon-based spintronics could be easily incorporated into present-day integrated circuits. Also, theory says that electron spins survive for a long time in silicon.

Electron spins come in two directions: “up” and “down.” In conventional charge-based electronics, electrons’ spins randomly fluctuate. But in a spintronics device, an up or down spin could represent a “1” or “0”.

Some forms of spintronics are already used in computers. For instance, the read heads in high-capacity computer hard drives use a metal-based spintronic device called a spin valve. The valve contains a nonmagnetic metal layer sandwiched between two magnetic layers, one of which has a fixed magnetic-field direction. As the read head travels over the 1s and 0s stored as magnet fields on the disk, the fields in the two magnetic layers flip back and forth, aligning and misaligning. When the magnetic fields are aligned, electrons with spins in the same direction flow through the device, representing a bit 1.

The trouble with making silicon spintronic devices has been measuring spin direction, says Paul Crowell, who does spintronics research at the University of Minnesota, in Minneapolis. There are ways to inject electrons with aligned spins into silicon, but without being able to measure spin in the material, one can’t know whether the electrons maintain their spin in silicon, let alone control their spin. In gallium-arsenide devices, one can use light to measure spin, Crowell says, but this is not possible in silicon, an area in which “one has to fly completely blind.”

To detect the spin coming out of silicon, Appelbaum and his colleagues made a detector with a unique layered structure: a nickel-iron layer on top of a copper layer, which is deposited on a silicon substrate.

0 comments about this story. Start the discussion »

Credit: Jon Cox, University of Delaware

Tagged: Computing, silicon, chip, spintronics

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »