Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

One of the challenges in making a robot stick to walls lies in finding a way to apply sufficient pressure to make them stick. The new CMU robot handles this using a tail. At any one moment, at least two of its six foot pads are in contact with the surface, as is the tail, which is spring-loaded so that it will always push against the surface, even when on the ceiling.

However, in developing these materials, the researchers still need to resolve some issues, says Andre Geim, a professor of condensed-matter physics at the University of Manchester, in the United Kingdom, who has also fabricated setaelike structures. “No one has yet explained why geckos can first run on a dirt road picking up dust and then somehow climb up walls,” he says. “This is a major obstacle.”

Cutkosky agrees that more research needs to be done into the self-cleaning abilities of geckos. “The world is dirty, and robots cannot be stopping to wash their feet every few meters,” he says.

7 comments. Share your thoughts »

Credit: Courtesy Michael P. Murphy and Metin Sitti

Tagged: Computing, robots, space, sticky materials

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me