Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Chemists have shown that it is possible to use solar energy, paired with the right catalyst, to convert carbon dioxide into a raw material for making a wide range of products, including plastics and gasoline.

Researchers at the University of California, San Diego (UCSD), recently demonstrated that light absorbed and converted into electricity by a silicon electrode can help drive a reaction that converts carbon dioxide into carbon monoxide and oxygen. Carbon monoxide is a valuable commodity chemical that is widely used to make plastics and other products, says Clifford Kubiak, professor of chemistry at UCSD. It is also a key ingredient in a process for making synthetic fuels, including syngas (a mixture largely of carbon monoxide and hydrogen), methanol, and gasoline.

The work is part of a growing effort to find practical uses for carbon dioxide, a leading greenhouse gas, says Philip Jessop, professor of chemistry at Queen’s University, in Ontario, Canada. Converting carbon dioxide into carbon monoxide is difficult to do, which Jessop says makes the UCSD work impressive and exciting.

At least at first, such a process will not make a significant impact on reducing greenhouse gases in the atmosphere–that would take quite large-scale operations, Kubiak says. But “any chemical process that you can develop that uses CO2 as a feedstock, rather than having it be an end product, is probably worth doing.” He adds that “if chemical manufacturers are going to make millions of pounds of plastics anyway, why not make them from greenhouse gases rather than making tons of greenhouse gases in the process?”

The system may also be part of a solution to a continuing problem with solar energy. For solar panels to be useful when the sun isn’t shining, the electricity they produce has to be stored. A potentially practical way of doing that is by converting the electrical energy into chemical energy. One popular approach is to use solar cells to produce hydrogen, which could then be used in fuel cells. But hydrogen gas is much more difficult to transport and store than are liquid fuels, such as gasoline, which contain far more energy by volume than hydrogen does. The UCSD system shows that it is possible to use solar energy to make carbon monoxide that then, together with hydrogen, can be converted into gasoline. Currently, carbon monoxide is made from natural gas and coal. But carbon dioxide is a more attractive raw material in part because it’s very cheap–indeed, it’s something industrial companies will pay to get off their hands, Jessop says. “There are very few chemicals which are cheaper than free, and carbon dioxide is one of them,” he says.

34 comments. Share your thoughts »

Credit: Aaron Sathrum, UCSD

Tagged: Energy, solar power, carbon dioxide, nanoparticles, catalysts

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me