Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Interest in the possibility of extraterrestrial life is leading scientists to design methods to study the most extreme regions of Earth, with the hope that such research will result not only in a better understanding of how life might sustain itself on Mars or Jupiter, but also in equipment that might one day be used in space. Such is the case at the University of Illinois at Chicago (UIC), where scientists have collaborated with NASA researchers to design an autonomous underwater vehicle (AUV) that will probe the icy waters of Antarctica. The robotic device, called endurance, will map the biological and geochemical composition of the ice-bound Lake Bonney in three dimensions using tools that scientists think will one day be employed in space.

The concept for the explorer is derived from a project being led by NASA’s Astrobiology, Science, and Technology for Exploring Planets program (ASTEP). The group, in search of microbial life, is using an AUV called depthx to map underwater caves in Mexico. Once the project is complete, the vehicle will be reengineered by its makers, Stone Aerospace, a Texas-based company, for Lake Bonney.

“While the propulsion and navigation systems between [endurance and depthx] will be similar, the science package will be completely different,” says Peter Doran, an associate professor of earth and environmental sciences at UIC and the project’s lead investigator, who formulated the initial proposal. “We are building an entirely new vehicle to discover how to best map a large water body covered in ice.” Both systems are being funded by NASA and engineered by Stone Aerospace. Endurance will also become part of ASTEP.

Unlike depthx, which swims through the warm water at various depths using visualization systems and which takes water samples to gather data, endurance will be dropped into the water through a drill or a melt hole in the ice and will swim at the top of the water. Tethered to it will be a deployable package that includes a new set of sensors designed to detect organic molecules and characterize life forms. By lowering the package into certain study areas, scientists will help preserve Antarctica’s pristine environment. An onboard flash drive will gather the data to be relayed back to a visualization laboratory in Chicago that will generate 3-D images, maps, and graphics of the lake.

The newest of the sensors already in development for endurance uses a Raman spectrometry to measure the composition of ice. This sensor differs from other spectroscopy spectrometers such as an infrared emission spectrometry by its use of laser beam to actively excite objects of study. By detecting property changes in the light bouncing back from target objects, the sensor can determine the chemical composition of a given object at any depth of the lake it chooses to study. Studying different depths of the lake will allow the scientists to create a profile of the chemical compositions of its many levels.

1 comment. Share your thoughts »

Credit: StoneAerospace/PSC, Inc.

Tagged: Communications, Robotics, robotics, NASA, space, mapping, environment, biology

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me