Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Moving the tip underneath the cantilever, the researchers can scan the whole calcium-fluoride sample. “As you move it along, you get more or less signal depending on the shape and size of the sample,” Mamin says. Finally, the researchers use these signals to reconstruct the sample’s image on a computer.

The image in the paper shows the calcium-fluoride samples on the cantilever pillars and the distance between the pillars with a resolution of 90 nanometers. The volume of the calcium fluoride is 60,000 times smaller than the volume that conventional MRI microscopy can detect.

While the images created so far are two-dimensional images, making 3-D images is a matter of making more scans, Rugar says. The researchers would have to move the magnetic tip up and down to image slices of the sample at different depths, and then simply put the slices together and create a 3-D image.

The method could just as easily be used on molecules containing other atoms with magnetic nuclei, including hydrogen, Rugar says. To achieve their ultimate goal of viewing a protein’s structure in 3-D, the researchers would need to precisely detect the locations of single hydrogen atoms in the protein. For this, the researchers would have to detect the magnetism, or spin, of a single nucleus, a resolution of about 0.1 nanometers. This is a challenge, says Chris Hammel, a physicist who does magnetic resonance research at Ohio State University. But, adds Hammel, the IBM group has made significant strides toward this goal.

The results in the new paper are promising because they show that the imaging technique is robust and that the IBM group’s ideas to improve imaging resolution are working out well, Hammel adds. “Single nuclear spin detection is just an amazing thing to even contemplate, and several years ago it was hard for most people to imagine that it was achievable, but this is starting to seem possible now,” he says. “There’s no indication that it cannot be done. This paper is a significant milestone in that quest.”

0 comments about this story. Start the discussion »

Credit: IBM Research

Tagged: Computing, nanotechnology, IBM, imaging, silicon, 3-D, MRI

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me