Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Understanding the functions of proteins often requires knowing their 3-D structures. But deciphering a protein’s structure is a time-consuming and difficult task, typically requiring crystallizing the proteins and bombarding them with x-rays. What’s more, scientists have not been able to crystallize thousands of proteins, so their structures remain unknown.

A far better option would be an analytic method that allowed biologists to directly determine protein structures. So Dan Rugar, manager of nanoscale studies at IBM’s Almaden Research Center, in San Jose, CA, and his colleagues are developing an imaging technique, based on magnetic resonance imaging (MRI), that allows scientists to see a protein’s structure in three dimensions, just as MRI scans show 3-D snapshots of the human body. Conventional MRI can make out features down to three micrometers. In an April 22 Nature Nanotechnology paper, the IBM researchers demonstrate a resolution of 90 nanometers, a milestone toward their eventual goal of imaging individual protein molecules, which are roughly three to ten nanometers in size. “For the first time, [we’re] moving an MRI imaging technique into the nanoscale,” says Rugar.

To image a protein or other biomolecule in three dimensions, the researchers hope to bring the resolution of the MRI method down to less than one nanometer so that they can pinpoint the location of individual atoms in a protein. Scientists could then reconstruct the protein’s structure. “In our dream, we’d be taking MRI 3-D images of all the atoms in a molecule,” Rugar says.

Magnetic imaging takes advantage of atoms such as hydrogen and fluorine whose nuclei act like tiny magnets because of a property called nuclear spin. In traditional MRI, a strong magnetic field forces the hydrogen nuclei in the body to align along the direction of the magnetic field. Then a coil applies a radio-frequency pulse to the body, which makes a few of the nuclei wobble, creating a voltage that is picked up by the coil and then analyzed by a computer to generate an image. “The difficulty with MRI,” Rugar says, “is that magnetism from nuclei is very weak. The weak signals make it hard to detect a small amount of material, which limits the spatial resolution of MRI.”

The IBM technique, on the other hand, can detect a small sample because it measures magnetic forces instead of measuring voltage. The technique sensitively measures the extremely small attraction and repulsion forces between magnetic nuclei in a sample and an external magnet, says John Mamin, a member of the IBM research team.

The researchers detect the small magnetic forces using a 100-nanometer-wide silicon cantilever. They carve four pillars at the free end of the cantilever, load the pillars with calcium fluoride, and then suspend the cantilever over a small, conical magnetic tip. Then they use a special method to flip the magnetic fluorine nuclei back and forth, which attracts and repels the magnetic tip. The force created as a result of the magnets’ interaction makes the cantilever vibrate. The researchers can measure the vibration with a laser, and this signal gives an indication of where and how much fluorine is around the magnetic tip.

0 comments about this story. Start the discussion »

Credit: IBM Research

Tagged: Computing, nanotechnology, IBM, imaging, silicon, 3-D, MRI

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me