Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A newly developed laser device that uses thermal radiation and light waves to detect tiny, subsurface lesions in teeth could potentially unseat x-rays as the diagnostic standard in dental care.

Researchers at the University of Toronto’s Centre for Advanced Diffusion Wave Studies say that the technology can spot lesions as small as 50 microns in between teeth, one of the most difficult spaces to spot cavities, and up to 5 millimeters below the surface of a tooth. This is well outside the boundaries of x-ray detection without exposing the patient to radiation. The researchers built a clinical prototype of the device this month and plan to begin clinical tests next year.

Dentistry, which has long lived by the “drill, fill, and bill” approach to dental care, is gradually shifting to a model focused on early detection and oral-disease prevention. Most new detection technologies on the market or in the lab attempt to image the teeth using light, including such methods as optical coherence tomography and light-induced fluorescence. Such products, while more effective than x-rays, have their own limitations.

“Light by itself cannot do it because it scatters too much,” says Andreas Mandelis, a professor of mechanical, industrial, and electrical engineering at the University of Toronto who codeveloped the new laser device.

Mandelis, an expert in the use of thermophotonics to detect defects in metals, semiconductors, and other crystal structures, realized seven years ago while visiting the dentist that subsurface defects in tooth enamel, such as demineralization, could be detected using the same approach. Loss of mineral content is a precursor to cavity development.

Mandelis’s dentist, Stephen Abrams, lamented that the dental profession treated decay, or “caries,” at the wrong end of the spectrum–when large, noticeable cavities had already formed. The two joined forces and began conducting research into diagnostic alternatives.

“The analogy we use is gangrene,” says Abrams, now chief executive of Quantum Dental Technologies, a startup founded by him and Mandelis to commercialize the laser device. “When do you want to treat gangrene: when you have to lob off a limb, or when you catch it early? Dentistry figures it’s been doing a great job, but what we’ve been doing is chopping off limbs all these years.”

Their device works by focusing pulses of laser light on the tooth, causing it to glow and release heat. The wavelengths of light and heat emitted from the tooth are captured by an infrared detector, offering detailed information about the tooth’s condition, including the presence of hidden lesions and signs of early demineralization of enamel.

2 comments. Share your thoughts »

Credit: Quantum Technologies

Tagged: Biomedicine, lasers, x-ray, infared, waves, flourescent

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me