Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Carson Palmer, the Cincinnati Bengals’ starting quarterback, was an NFL MVP contender in 2005 until he suffered a tear in his anterior cruciate ligament (ACL), the knee’s main support structure, which is commonly injured in sports. Surgical reconstruction is typically required to repair the ligament, but current methods continue to take significant recovery time, during which a patient may sustain a loss of strength and function. Now, researchers at the University of Virginia have bioengineered a new ACL replacement using a 3-D polymeric fiber braiding process. It’s the first synthetic scaffold design to demonstrate exceptional tissue regeneration and healing, and it could lead to a promising ligament-replacement technology.

“Our goal was to regenerate the ACL using classic design principles from engineering and material that has mechanical properties that mimic the natural ACL,” says Cato Laurencin, the team leader and chairman of the University of Virginia Department of Orthopedic Surgery. His team found that it could utilize its newly developed synthetic polymer system with ACL cells to reconstruct the ligament and produce neoligament tissue. “Any solution that can be devised to speed up the healing and long-term function is hugely important to patients,” says Laurencin.

Current surgical treatment requires an orthopedic surgeon to remove the torn ACL and replace it with a new ligament made either from autograft tissue, which is taken from a patient’s own healthy tissue (usually from a strip of tendon under the kneecap or hamstring), or from allograft tissue, which is taken from a cadaver. To do this, holes are drilled in the places on the tibia and femur where the ACL attaches, and the new ligament is passed through the holes and held in place with screws. Whether using autograft or allograft tissue, the treatment necessitates an extensive healing time ranging from, depending on the severity of the tear, six months to one year, during which the patient might have to wear a brace or use crutches and undergo physical therapy. Palmer spent the final two of almost six months of rehab doing four to six hours of strength and flexibility work a day with a performance coach. This resulted in his being about 80 percent recovered at the start of football training camp.

Several groups have explored ligament-like scaffolds using collagen fibers, silk, and composites, but with limited success. “There just hasn’t been very much successful work done on tissue-engineering ligaments,” says Robert Langer, a professor of chemical and biological engineering at MIT. “This [Laurencin’s team’s work] is a very significant discovery. I haven’t seen anybody do what they are doing with ligaments before.”

The ACL replacement developed by Laurencin’s team uses a clinically proven, FDA-approved biocompatible polymer, polyL-lactide (PLLA), which is frequently used in drug delivery systems, biomedical devices, bone plates, and sutures. Laurencin’s team uses the polymer to stabilize the knee while the scaffold promotes the regeneration of new ligament tissue. The polymer is an absorbable material: its mechanical properties and mass diminish with time and in a manner that permits a favorable biological response.

1 comment. Share your thoughts »

Tagged: Biomedicine, 3-D, polymers, FDA, sports medicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me