Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »


The answer lies in the way that copper atoms interact with interfaces between and within the microscopic crystals that make up copper. Within each of these crystals, called grains, atoms are free to slide past one another in certain directions but not others when a force is applied to the material. But when the atoms reach the edge of a grain, they meet atoms in the neighboring grain that aren’t free to move in that same direction. As a result, the atoms stop slipping. For decades, researchers have known that making the grains smaller–say, 10 nanometers across instead of a few micrometers–makes the material stronger. That’s because there are more grains and, therefore, more boundaries that prevent the atoms from shifting.

If too much force is applied, however, the dislocated atoms at these boundaries can cause the materials to break apart. This makes nanostructured materials more brittle.

The new version of copper contains another set of boundaries, called twins. These occur inside a grain when atoms on either side of an imaginary line are mirror images of each other. In the new copper, the grains are much larger than 10 nanometers, but they’re divided into twins with boundaries about 10 nanometers apart. These boundaries are much more orderly than grain boundaries are.

The researchers found that the twins resist the movement of the atoms, making the material stronger. But even if the force is too great for the twin boundary to stop the atoms from moving, the material doesn’t break apart because the atoms are lined up in an orderly way. Rather, the displaced atoms are absorbed on the other side of the boundary.

Although the model has only been tested against data about nanostructured copper, Suresh says it can be applied to other metals as well, making it a general tool that could advance nanodesign in many areas.

Kaxiras says the new model is a significant improvement and that this first application is “quite interesting.” He adds that “the results are very insightful.”

 

1 comment. Share your thoughts »

Tagged: Computing, Materials, software, MIT, nanotechnology, materials

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me