Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Researchers at the National Space Biomedical Research Institute (NSBRI) and the U.S. Naval Academy (USNA) have developed a novel radiation detector to be used during space missions, particularly those to the Moon and Mars, where energy levels are dangerous and approximate doses are estimated. The device, called a microdosimeter, is small and low-powered, and it can measure atmospheric radiation levels in real time.

“We are really taking existing technology and pushing it to new limits so that we can apply it where it has never really been applied before,” says Vince Pisacane, a researcher on the NSBRI Technology Development Team, a professor of aerospace engineering at the USNA, and the principal investigator on this project. By using a silicon device of his team’s own making as a basic sensor, Pisacane hopes to achieve the type of accuracy needed to make estimates of the radiation exposure of humans in space. “It is really critical [to human health that] it be as precise as possible,” he says.

Since the Apollo missions, NASA has flown a variety of radiation detectors on every mission; most of these detectors have been based on one piece of hardware: a dosimeter. This device, still the most accurate instrument used by people regularly exposed to radiation in their work, measures the total accumulated amount of radiation exposure and can take the form of a badge, a pen-size tube, or a digital readout. But the device, while very durable and portable, provides measurements of radiation exposure only after the fact, so the doses of radiation that astronauts are receiving while in space aren’t known until they return to Earth.

To the degree that space exploration involves manned missions, the need for better radiation detection is acute. In just a day or two on the lunar surface, astronauts can receive up to 600 times the amount of radiation a person on Earth receives in a year, explains Ann Kennedy, Richard Chamberlain Professor of Research Oncology and a professor in the Department of Radiation Oncology, University of Pennsylvania School of Medicine. “Of most concern is a solar-flare or solar-particle event that can occur without warning from the sun emitting particles at high volume, leading to high doses for astronauts,” she explains. The effects of exposure to extreme radiation can be severe: vomiting, erythema (skin reddening), cancer, leukemia, and even death.

To build a tool that can help astronauts avoid such effects, Pisacane’s team used the central idea of a dosimeter–that is, measuring the total amount of radiation exposure–but it’s measuring not just the cumulative amount of radiation that the body receives: it’s also measuring the cumulative amount that each cell in the body receives. By studying radiation on a microscopic scale, the researchers hope to better understand the cellular effects of radiation.

The microdosimeter, which is about the size of a package of cigarettes, contains an array of cells made out of silicon, each one typically the size of a red blood cell and arranged on an electronic board like the squares on a checkerboard. Each cell continuously records the amount of small energy particles being deposited. Some particles will deposit more energy and different types than others. From looking at this data, researchers can create an energy spectrum that will allow them to gauge the range of energies and the values that could be deposited within the human body.

2 comments. Share your thoughts »

Credit: Courtesy of USNA.

Tagged: Computing, silicon, sensor, emissions, radiation

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me