Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

According to the U.S. Department of Health and Human Services, the average American will lose about eight teeth by the time he or she turns 50. Common replacements include dentures, which have been known to erode the underlying bone over time, and dental implants, which are prone to falling out after several years’ use. Thus, the ability to regrow a natural tooth, with the accompanying bone, root, and nerves, could provide a significantly healthier alternative for many.

Recently, a Japanese team from the Tokyo University of Science, led by associate professor Takashi Tsuji, reported in Nature Methods that it had successfully regrown a tooth from cells extracted from mouse embryos. The researchers were able to transplant the tooth into an adult mouse, and the tooth bud continued to grow to full size.

Teeth in mice, much like those in humans, form during embryonic development from two major cell types: epithelial and mesenchymal. Epithelial cells give rise to the outer enamel, while mesenchymal cells form a tooth’s inner connective tissue and blood vessels. Takashi’s team isolated both kinds of cells from multiple mouse embryos, then transferred them to a collagen gel culture, in which the cells interacted to form a tooth bud. Researchers then transplanted the bud into the liver of an adult mouse, where the increased blood supply aided further tooth formation. Finally, Takashi inserted the tooth into an empty cavity within the mouse’s mouth, in which it grew to full size.

Whether the technique will be practical for regrowing teeth is uncertain. Paul Sharpe, head of the Craniofacial Development Department at King’s College, in London, doubts that the technique will be useful for humans, particularly since the Tokyo team used embryonic cells, which are difficult to obtain in large numbers and may be rejected as a foreign substance when transplanted into a human adult.

A better approach, Sharpe suggests, may be to use adult stem cells, which can be obtained from a patient’s hair, skin, or other tissue; manipulated with the right molecular cues to form any kind of tissue; then transplanted back into the same person with less rejection problems.. Sharpe’s lab is looking for adult stem cells, including those found in bone marrow and dental gum, as possible candidates for regrowing teeth. So far, he and his colleagues have had success with bone-marrow stem cells, forming teeth and transplanting them into mouse cavities. However, Sharpe says that obtaining such cells from human bone marrow is a painful process. In the next three years, he hopes to identify more-accessible stem cells that may be able to form not only teeth, but also–and more important–roots.

39 comments. Share your thoughts »

Credit: Takashi Tsuji

Tagged: Biomedicine, stem cells, medicine, implant

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me