Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

“It’s very exciting,” says Terrence Sejnowski, head of the Computational Neurobiology Laboratory at the Salk Institute, in La Jolla, CA. “The technology has matured to the point where it’s possible to think about large-scale simulations.” For example, Sejnowski studies how the thalamus, a brain area thought to relay and integrate information from different parts of the brain, interacts with the cortex. “We can currently do small simulations of hundreds to thousands of neurons, but it would be great to be able to scale that up,” he says.

The million-neuron grid will have a processing speed equivalent to 300 teraflops, meaning that unlike computer-software simulations of the cortex, the hardwired silicon model will be able to run in real time. “Instead of running a thousand software instructions, it’s just current running through transistors, just like real neurons,” says Boahen.

Of course, the project will be a challenging one. “They will have to get a large number of chips to work together,” says Douglas. “To put together a structure on the scale Kwabena has in mind–no one has done that yet.” But it could become a turning point in the field. Douglas likens the current state of neuromorphic engineering to the early stages of computer-chip design. “People had been working on different types of logic gates, but it took a whole different worldview to build computer chips,” he says.

Engineers ultimately hope to use the information generated by the silicon cortex in a variety of ways–to build better neural prostheses, for example. “The real-time aspect of this technology allows us in principle to interface the silicon cortex with the real cortex or brain,” says Gert Cauwenberghs, a neuroengineer at the University of California, San Diego. “There is the promise, at least in the future, to build a prosthesis to replace some lost motor function or sensory function.”

16 comments. Share your thoughts »

Credit: Joseph Lin

Tagged: Computing, Biomedicine, brain, silicon, neuroscience, chip, neuron

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me