Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Concrete is the most widely used man-made material, and the manufacture of cement–the main ingredient of concrete–accounts for 5 to 10 percent of all anthropogenic emissions of carbon dioxide, a leading greenhouse gas involved in global warming. But now, researchers at MIT studying the nanostructure of concrete have made a discovery that could lead to lower carbon-dioxide emissions during cement production.

The researchers found that the building blocks of concrete are particles just a few nanometers in size, and that these nanoparticles are arranged in two distinct manners. They also found that the nanoparticles’ packing arrangement drives the properties of concrete, such as strength, stiffness, and durability. “The mineral [that makes the nanoparticle] is not the key to achieving those properties … rather, it’s the packing [of the particles],” says Franz-Josef Ulm, a civil- and environmental-engineering professor at MIT who led the work. “So can we not replace the original mineral with something else?” The goal is to formulate a replacement cement that maintains the nanoparticles’ packing arrangement but can be manufactured with lower carbon-dioxide emissions.

Cement manufacture gives rise to carbon-dioxide emissions because it involves burning fuel to heat a powdered mixture of limestone and clay at temperatures of 1,500 ºC. When cement is mixed with water, a paste is formed; sand and gravel are added to the paste to make concrete. But scientists do not fully understand the structure of cement, Ulm says.

The biggest mystery is the structure and properties of the elementary building block of the cement-water paste, calcium silicate hydrate, which acts as the glue holding together all the ingredients of concrete. “All of the macroscopic properties of concrete in some way are related to what this phase is like at the nanometer level,” says Jeffrey Thomas, a civil- and environmental-engineering professor at Northwestern University.

If this structure was better understood, researchers could then engineer cement on a nanoscale to tailor the properties of concrete, says Hamlin Jennings, a civil- and environmental-engineering and materials-science professor at Northwestern. Because researchers do not know the behavior of cement on a nanoscale, until now, “progress in concrete and cement research has largely been hit-and-miss,” Jennings says.

Jennings had predicted that calcium silicate hydrate is a particle with a size of about five nanometers. Ulm and his postdoctoral researcher Georgios Constantinides have confirmed this structure using a technique called nanoindentation, which involves probing cement pastes with an ultrathin diamond needle.

8 comments. Share your thoughts »

Credit: Chris Bobko

Tagged: Computing, Materials, MIT, nanotechnology, carbon dioxide, nanoparticles, emissions

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me