Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Researchers at Caltech and University of California, Los Angeles, have built memory chips that pack more than 50 times more bits into a given area than those currently in production. The work is a strong demonstration that molecular electronics using molecules and nanowires can be employed to make large arrays of memory bits.

Researchers have already assembled simple memory devices that use molecular switches, but these previous circuits incorporated at most a few thousand bits. (See “Molecular Computing.”)

The California researchers made molecular memory that integrates 160,000 devices for storing bits of data. That’s still just 20 kilobytes–small by today’s memory standards. But the bits are packed much more densely than in today’s memory technology. According to the International Technology Roadmap for Semiconductors, memory chips in 2006 had 1.79 gigabits per square centimeter. The new work reaches 100 gigabits per square centimeter, a density that the Roadmap forecasts chips won’t reach until sometime after 2020.

“We thought that if we weren’t able to make something at this scale, people would say that this is just an academic exercise,” says James Heath, professor of chemistry at Caltech and one of the researchers on the project. “There are problems still. We’re not talking about technology that you would expect to come out tomorrow. We’re talking about hitting the benchmark that is twenty years off or so. So you’ve got time.”

The work is part of a growing effort to find nano-based alternatives to conventional silicon electronics, as chip makers pack more and more devices, such as transistors, onto chips. Current silicon-based technology is facing limits in terms of how much more it can be miniaturized. So researchers are turning to new approaches, including chemical and physical techniques that assemble regular patterns of nanowires with atomic-level control. They’ve also developed new chemical synthesis techniques to make molecules that act as switches. (See “Molecular Memory.”)

In the new chips, a layer of molecules is sandwiched between two layers of 400 nanowires each. The nanowires run perpendicular to each other, forming a grid. Where two wires intersect, they deliver electronic signals that read or write information to the molecular switches.

The chip uses molecular switches developed by J. Fraser Stoddart, the head of nanosystems science at UCLA, to store data. The switch molecules, called rotaxane, are barbell-shaped, with a ring of atoms that moves between two stations on the bar, its position depending on the voltage applied. The conductivity of the molecule changes according to the location of the ring, and these two distinct states represent the ones and zeros that make up memory.

0 comments about this story. Start the discussion »

Credit: James R. Heath/Caltech

Tagged: Computing, nanotechnology, memory, nanowire, data storage, storage capacity

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me