Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Several other projects–from whale carcasses to wastewater sludge–are under way or already complete, promising a huge volume of novel genetic data. A recent project at the University of California, Berkeley, for example, identified three new organisms living in the highly acidic environment of abandoned mines. (Bacteria covering the floors of these mines convert iron into acid, which can then pollute nearby streams.) “They are close to the size of viruses and may be the smallest organisms ever discovered,” says Brett Baker, a research scientist at UC Berkeley, who worked on the project with Jill Banfield, also at UC Berkeley. These organisms may give clues to other life forms adapted to extreme environments, such as Mars.

The next hurdle in metagenomics will be trying to find the function of many of the newly identified genes: unlike cellulases in termites, most genes have little structural similarity to genes of well-studied organisms, making it difficult to infer their function. In a sample of water from the Sargasso Sea collected by genomics pioneer Craig Venter, the two most common and likely most important gene families are totally unique: scientists have no idea what they do. “In some ways, it’s crude to focus on enormous mountains in the genomic landscape,” says Hugenholtz. “But it does immediately draw attention to interesting avenues to pursue.” Structural studies are now under way to try to figure out these proteins’ function.

Metagenomics projects may eventually be able to shed light on these unknown genes. “We can look at representations of genes of unknown function in similar environments, compare them to environments that lack a particular function, and then triangulate,” says Bristow. And metagenomic signatures could one day be used as a fingerprint to identify certain environments, he adds. They “could be used as a way of identifying places you might want to drill for oil or look for minerals or contamination of some kind,” he says. “Just seeing the genes might tell you what’s happening there.”

0 comments about this story. Start the discussion »

Credit: Microbial Diversity Course, 1997

Tagged: Biomedicine, energy, DNA, biofuel, biology, gene-sequencing technology

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me