Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Scientists are sequencing the genomes of entire microbial communities in the hope of uncovering new genes and organisms that can create fuel, mine metals, or clean up superfund sites. Known as metagenomics, the field relies on studying bits of DNA from a variety of organisms that live in the same place. Thanks to ever-improving sequencing methods, the number of metagenome projects is growing, giving scientists myriad new genes to explore.

“This opens up a new way of looking at these organisms,” says Jim Bristow, director of the community sequencing program at the Department of Energy’s Joint Genome Institute, in Walnut Creek, CA. “We’ll probably discover lots of fundamental processes that we previously knew nothing about.”

Microorganisms make up an immensely important and often overlooked part of the environment. “They constitute the bulk of our biosphere and underpin all the nutrient cycles on our planet,” says Philip Hugenholtz, leader of the microbial ecology program at the Joint Genome Institute. “But our understanding of these systems is still rudimentary.” Microbiologists would like to better understand these communities, so they can co-opt useful genes or organisms, such as those that remove pollutants from soil, or better control microbial communities, such as those that live in our mouths or gut.

The standard way to identify and study the microorganisms living in a particular community is to grow them in a lab, but this is only possible with about 1 percent of microbes. However, in the past two years, faster and cheaper gene-sequencing methods have offered microbiologists a new tool with which to study the other 99 percent. Scientists can extract the DNA from, say, a drop of seawater or a sample of sludge from a sewage-treatment plant and then sequence that DNA, deriving genomic clues to all the organisms living in that environment.

Assembling the random fragments of DNA generated during sequencing can be a challenge–even impossible in some cases. Hugenholtz likens the process to trying to put together one thousand jigsaw puzzles from a single box that holds only a few pieces from each puzzle. So rather than fully assembling these genomic puzzles, scientists try to understand the individual pieces, or genes. Identifying the genes that allow the microbes in the termite gut to digest wood, for example, could lead to better biofuels. Converting cellulose in trees and grasses into the simple sugars that can be fermented into ethanol is a very energy-intensive process. “If we had better enzymatic machinery to do that, we might be better able to make sugars into ethanol,” Bristow says. “Termites are the world’s best bioconverters.”

Researchers at the Joint Genome Institute, which sequenced some of the human genome and is now largely devoted to metagenomics, have just finished sequencing the microbial community living in the termite gut. They have already identified a number of novel cellulases–the enzymes that break down cellulose into sugar–and are now looking at the guts of other insects that digest wood, such as an anaerobic population that eats poplar chips. The end result will be “basically a giant parts list that synthetic biologists can put together to make an ideal energy-producing organism,” says Hugenholtz.

0 comments about this story. Start the discussion »

Credit: Microbial Diversity Course, 1997

Tagged: Biomedicine, energy, DNA, biofuel, biology, gene-sequencing technology

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me