Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Scientists who have studied the genetic makeup of several large and ethnically diverse populations have discovered another gene that may be a modest risk factor for Alzheimer’s disease. The gene, called SORL1, may be involved in the development of late-onset Alzheimer’s, the most common form of the disease, which occurs after age 65 and accounts for 90 percent of Alzheimer’s cases today. Researchers say determining how SORL1 and other genes cause or influence Alzheimer’s disease could open up new avenues for diagnosis and treatment.

“Ultimately, one wants to be able to profile an individual for genes and variants within genes … that may give an understanding of the disease process,” says Lindsay Farrer, chief of the genetics program at Boston University. “And secondly … therapies can be tailored to an individual’s profile. We’re still in the early days of filling in the pieces of that puzzle.”

Farrer and his colleagues zeroed in on the gene SORL1 thanks to previous studies that revealed a key biological pathway in Alzheimer’s. Today, most researchers agree that the disease is caused by a buildup of amyloid plaque in the brain. The chain of events that produces this plaque begins with a normal protein, amyloid precursor (app). When this protein comes in contact with a certain type of enzyme called presenilin, that enzyme cuts, or cleaves, app into a more toxic peptide, amyloid-beta. This sticky protein fragment clumps together to form amyloid plaques, killing nerve cells. For years, scientists have looked for ways to stem this cascade. SORL1, according to Farrer, could play a pivotal role in the disease’s pathway.

Through previous cellular experiments, Farrer and other research groups found that SORL1 is essentially a trafficking molecule. Under normal conditions, SORL1 directs app away from what researchers call the “forbidden zone”–where the enzyme presenilin resides–thus preventing the protein from being sliced apart to form toxic plaque.

“It’s like a delivery boy or carrier protein that delivers the amyloid precursor to various parts of the cell,” says Samuel Gandy, director of the Farber Institute of Neurosciences and vice chair of the Alzheimer’s Association’s Scientific Advisory Council. “It sits at the crossroads of a cell and tells proteins where to go.”

In a five-year study, published in the February edition of Nature Genetics, Farrer, along with colleagues from the University of Toronto, Columbia University, and the Mayo Clinic, analyzed DNA samples from 6,000 people across nine different groups. These groups included Northern-European Caucasians, Caribbean Hispanics, Israeli Arabs, and African Americans. Some groups were selected based on family history: two or more members had the disease. Others were selected based on sibling pairs: one sibling had Alzheimer’s, the other didn’t. The rest had no family linkage to the disease. All cases were compared with controls: genotypes of people without Alzheimer’s.

0 comments about this story. Start the discussion »

Tagged: Biomedicine, brain, genetics, disease, Alzheimer’s, enzymes

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me