Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The National Institutes of Health (NIH) recently began a clinical trial of a novel kind of bird-flu vaccine that can be designed and manufactured three times faster than traditional vaccines. These new DNA vaccines, which have shown promise in animals, could help researchers respond rapidly to an emerging flu pandemic.

“The current vaccines for avian flu don’t work well,” says Gary Nabel, director of the Vaccine Research Center at the National Institute of Allergy and Infectious Diseases, who is leading the DNA vaccine trial. The current vaccines might not even be targeted at the right strain. And while using traditional approaches, a pandemic might claim many lives before a working vaccine can be made: it takes at least six months to design and manufacture a conventional vaccine. DNA vaccines, which simply consist of a gene from a virus or other infectious agent, might help researchers catch up.

Making a conventional influenza vaccine involves predicting which strain of the virus will impact the population, then isolating and purifying it, and growing it in chicken eggs. To make a DNA vaccine, all researchers need is a gene from the virus–they don’t need to grow the virus itself. “DNA vaccines are much more efficient to make,” says Nabel. “You can make new prototypes within days. Production may take another couple months for quality control.”

The NIH vaccine uses a gene from the H5N1 avian-flu virus, the deadly strain that has infected 261 people in Asia. As in all DNA vaccines, the H5N1 gene is carried in a circle of DNA called a plasmid. The plasmids are injected into arm-muscle tissue, whose cells take them up and use the viral gene to make protein–in the case of the NIH vaccine, a protein that appears on the surface of the virus. The protein enters the blood stream, and the immune system, recognizing it as foreign, starts to make antibodies against it. If someone who has been vaccinated with the H5N1 flu gene is infected with the H5N1 virus, the researchers hope these antibodies will help his or her body quickly recognize and fight the infection.

Nabel’s group has demonstrated that a similar DNA vaccine protected mice from infection by both H5N1 and the strain responsible for the 1918 pandemic flu, which killed an estimated 20 to 50 million people worldwide. The NIH trial–the first human test of a bird-flu DNA vaccine–will enroll 45 people and will test the safety of the H5N1 vaccine and whether vaccinated subjects produce enough antibodies to combat infection.

0 comments about this story. Start the discussion »

Credit: PASIEKA / Photo Researchers, Inc

Tagged: Biomedicine, DNA, virus, vaccine, NIH

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me