Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

“There is a potential for this to bring a profound change in cancer treatment,” Halas says. “For the case of someone discovering a lump in their breast, this would mean that a very simple procedure could be performed that would induce remission.” She says that “for many, many cases of cancer, rather than the lengthy chemotherapy or radiation therapy,” an individual would have “one simple treatment and very little side effects.”

Halas anticipates that approval for the method will come quickly, in part because the nanotechnology is not a drug but a device, for which the approval process is simpler. Also, she expects it will perform the same in humans as in animal models, “because heat and light work in exactly the same way whether you’re in a pig, a dog, [or] a human being.”

Since their initial experiments, the researchers have been further developing the technology. They’ve demonstrated the ability to coat the nanoshells with antibodies that latch on to breast-cancer cells, further improving the selectivity of the treatment. They’ve also attached molecules that make the nanoshells into pH sensors that would be useful for both imaging tumors and as an “optical biopsy” for identifying cancers, Halas says.

The clinical trials this year will not take advantage of these advances. But eventually the antibody targeting could make preventative cancer treatments possible. “If you have the genetic profile for prostate cancer occurring in your family, one could imagine treating extremely early stages, when you have something a millimeter or smaller which you could barely visualize,” Halas says. “With antibody targeting and then illumination of that region, you could destroy those cells at a very early stage. You could have a treatment every five to ten years, and then you would be free of the disease.” The nanotechnology could also be used to eradicate cancers that have spread too much to be removed by surgery.

While people will not be able to take advantage of these advances in the near future, Halas says that treatments based on the original design could be available in a couple of years. Ferrari cautions that most treatments do not make it through clinical trials, but, he says, “I’m hopeful that their clinical trials will yield great results.”

1 comment. Share your thoughts »

Credit: Corey Radloff and the Halas Group, Rice University

Tagged: Biomedicine, Materials, cancer, nanotechnology, nanoparticles, tumor, chemotherapy

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me