Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Nanotubes light up displays.
LCD computer monitors are quickly replacing old, bulky, cathode-ray-tube (CRT) screens. But CRTs are still prized for their excellent color rendition, wide viewing angles, and fast response time. These features are now coming to the flat screen in the form of CRT-like field-emission displays, which, rather than using an electron gun a foot and a half behind the screen, light up pixels with millions of electron emitters placed within millimeters of the screen. In one version, developed by Canon and Toshiba, nanoscale gaps in a thin film emit electrons. Motorola uses carefully spaced carbon nanotubes. Field-emission displays have been around for years, but the nanotech is making them potentially less expensive, and thus competitive with other display technology. (See “High-Definition Carbon Nanotube TVs.”) Nanotech is enabling other types of displays as well. MIT spinoff QD Vision, of Watertown, MA, is developing ultrathin and potentially flexible displays based on nanoscale semiconductor crystals called quantum dots. These would require much less energy than LCDs and feature more-vivid colors. (See “Nanocrystal Displays.”) Meanwhile, so-called electronic ink developed at MIT is starting to appear in commercial products, such as Sony’s electronic book reader and a low-cost cell phone from Motorola. (See “A Good Read” and “Motorola’s Dumb Phone.”)

iPod powered by sneakers?
Researchers have developed zinc-oxide nanowires that can generate electricity from body movements, potentially leading to iPod-charging sneakers. The nanowires are grown to stand on end on an electrode. When the nanowires flex in response to jolts from people walking or other movements, electronic charges shift in the material, creating electric potential, or voltage. This leads to an electrical current once the nanowire is connected to a circuit. Although each nanowire makes a tiny amount of electricity, together they can easily be grown in dense arrays large enough to power small medical implants, such as micro-glucose sensors, and perhaps eventually in consumer electronics. (See “Free Electricity from Nano Generators.”)

Conventional cancer treatment can wreak havoc on the body. So researchers are developing technology smaller than the cancer cells that can seek them out, slip inside, and deliver a dose of deadly cancer medicine, leaving healthy cells untouched. Polymer nanospheres developed by researchers at MIT and Harvard University trick cancer cells into engulfing them. Unlike conventional chemotherapy, which may leave behind some cancer cells that can form new tumors, the nanosphere treatment releases drugs gradually to keep the cancer from coming back. (See “Single-Shot Chemo.”) In an earlier-stage project, researchers in Switzerland are developing nanotech that mimics living cells, incorporating into hollow polymer spheres proteins that can open or close in response to signals in the environment, further improving the specificity of the treatment. (See “Cell-Like Nanoparticles for Attacking Disease.”) As researchers race to develop new cancer-fighting nano tools, an important weapon will be computer modeling, which will help researchers identify materials and structures that can be used safely in the body. (See “Speeding Up Nanomedicine.”) But perhaps the biggest impact of nanotechnology on health could be new ways of using nanostructures to purify water, since dirty water is a leading cause of disease worldwide. (See “Cheap Drinking Water from the Ocean” and “Cleaning Up Water with Nanomagnets.”)

2 comments. Share your thoughts »

Credit: Patrick Hunziker, University of Basel, Switzerland

Tagged: Computing, Materials

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me