Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Practical devices made of nanostructures are a step closer to being realized. Researchers at Rice University have demonstrated that carbon nanotubes can be chopped into small pieces to form “seeds” that grow more nanotubes of precisely the same type The method could eventually make it possible to grow large amounts of carbon nanotubes with identical structure and properties, which could pave the way for a diverse set of carbon nanotube-based applications, such as vastly improved electrical transmission lines and ultracompact, high-performance computers.

One of the main difficulties of using carbon nanotubes for such applications is that existing manufacturing processes create a mix of nanotubes with a wide range of electronic properties. Indeed, one process for making single-walled carbon nanotubes yields as many as 80 different types of nanotubes. In applications requiring semiconducting nanotubes, such as in transistors for computer chips, highly conductive metallic carbon nanotubes could ruin the device.

The ideal solution would be to grow precisely the type of nanotube needed at exactly the location on a chip where it’s needed. This would make it possible to use nanotubes with consistent semiconducting properties in transistors, for example, and also to connect these transistors with highly conductive metallic versions of carbon nanotubes. Now James Tour, professor of chemistry at Rice University, and his colleagues have taken an important step toward such a system by demonstrating a way to make multiple copies of a single nanotube.

“They have proof now that they’ve been able to grow [a nanotube copy] from a seed,” says Michael Strano, professor of chemistry and biomolecular engineering at the University of Illinois, Urbana-Champaign. “If Jim Tour is ultimately successful, he’ll be able to grow large amounts of just one type of carbon nanotube, and so this will make that one type, or any type, very cheap and affordable.” He adds, “It’s a long road ahead. But it’s an important step forward.”

The Rice researchers used chemical methods to break single-walled carbon nanotubes into smaller pieces. They then chemically attached iron nanoparticles to both ends of these small tubes. When the researchers introduce a source of carbon atoms, in this case ethylene, the iron acts as a catalyst to allow the carbon to attach to the existing nanotube, thereby extending its length. In experiments published in last week’s Journal of the American Chemical Society, the researchers confirmed in two cases that the method allows long nanotubes to grow from iron particle-carbon nanotube seeds. These nanotubes had the same diameter as the seeds, which suggests that they will have the same properties.

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me