Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Researchers at the University of Tokyo have demonstrated a prototype that could offer a new way to power gadgets. The prototype, which consists of plastic and flexible electronics, can wirelessly supply power to any device that touches its surface.

The power sheet, says Takao Someya, professor of engineering at the University of Tokyo, relies on the well-known physical principle of electromagnetic induction, used to charge electric toothbrushes and some RFID tags. However, he says, his system is designed in a way that overcomes the limitations of common induction schemes. Traditional induction systems can only spread small amounts of power over a relatively large area, and fairly large amounts of power can only be supplied to precise locations (such as a toothbrush mount). Someya’s power sheets, in contrast, can be large, and they can still supply a large amount of power to gadgets placed near them.

This new capability, he says, is enabled by a novel design and by advances in the fabrication of flexible electronics. The power system actually consists of two types of sheets: one sheet senses the position of an object, and the other sheet supplies power to the object’s point of contact, but not to the rest of the sheet. “In this way, the system selectively feeds power as high as 30 watts to electronic objects placed upon it,” Someya says.

The position-sensing sheet relies on two types of flexible electronics. Using a technique similar to silk screening, the researchers printed an array of copper coils 10 millimeters in diameter. In addition, they used a modified inkjet printer to print an array of organic transistors. Both devices are thin and flexible enough to bend with a sheet of plastic.

Gadgets would need to be equipped with a coil and special power-harvesting circuitry to use the power pad. As the gadget gets closer to the pad, the electrical resistance of the pad’s coils decreases. The array of transistors detects the exact position of the change in resistance and effectively directs the subsequent power flow, which is provided by devices on the second sheet of plastic.

7 comments. Share your thoughts »

Credit: Takao Someya

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »