Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Boston researchers have developed an implantable device that could help doctors monitor whether chemotherapy drugs are reaching tumors. The device could also rapidly verify whether the drugs are working and alert the doctors if the cancer recurs. The tiny silicone rod holds nanoparticles designed to clump and become visible on an MRI scan in the presence of cancer markers such as growth hormones and cancer drugs. The device, which is in preclinical tests in mice, can be implanted in inoperable tumors during a routine biopsy.

Today, the only way to tell whether a cancer drug is working is to monitor changes in tumor size over the course of months. Led by Michael Cima, MIT professor of materials science and engineering, the researchers hope their implant will help doctors monitor cancer patients in real time. Current monitoring timescales are “too long,” says Linda Molnar, consultant program officer at the National Cancer Institute’s Center for Strategic Scientific Initiatives. “You don’t know if a very toxic treatment is helping,” she says. Cima’s real-time monitoring device could be “an enabling technology for personalized medicine.”

The trend in cancer-drug development is toward multiple drugs with specific molecular targets. Faced with so many treatment options, Cima says, doctors will need to assess a drug’s effects much more quickly.

Cima’s tumor monitor is a silicone rod about eight microliters in volume filled with sensing nanoparticles. At the center of each particle is iron oxide, a good contrast agent for MRI scans. However, because the particles are so small, it’s only when they clump together that they are easy to see on an MRI scan. The iron-oxide particles are coated with the carbohydrate dextran, to which the researchers can attach multiple antibodies for whatever molecule in the tumor environment they want the device to detect. When the target molecule enters the device, several nanoparticles will attach to it and become visible as a dark speck on an MRI scan.

The implant has a semipermeable membrane whose pores are too small to let out the nanoparticles but large enough to let in drug molecules and proteins. The introduction into the body of antibodies like those on the nanoparticles can cause dramatic and unpredictable immune responses. But if his device works correctly, says Cima, all the nanoparticles will stay in the rod.

The silicone rod is small enough to be implanted during a traditional needle biopsy. “It’s no more invasive than what’s done already [in a biopsy],” Cima says. Many kinds of tumors–especially in the brain, head, and neck–can’t be removed surgically because of their location or because they are so diffuse. In such cases, doctors can only provide chemotherapy and hope the tumor shrinks. Cima’s device could help them monitor treatment of these inoperable tumors.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me