Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Researchers at Texas Tech are teaming up with General Electric (GE) to try to optimize what is in theory an ideal marriage: using wind turbines to power water-desalination plants. That way, many water-deprived areas could ultimately obtain clean drinking water in a sustainable way. And wind-turbine farms could gain a place to use excess electricity on high-wind days.

It may sound straightforward, but it’s a tricky task: the water-desalination process envisioned for the project–known as reverse osmosis–operates best at stable, continuous rates. And that’s difficult to achieve when the electricity source is variable. The technology goal is a control unit that can keep the desalination plant running as stably as possible, store some power at certain times, sell some to the grid at peak times, and also pump water to and from the system as necessary.

Within several years, the Texas Tech researchers hope to erect a 1.5 megawatt turbine that will power a desalination plant capable of supplying water to the town of Seminole, TX, which has about 10,000 residents. A 1.5 megawatt wind turbine, generating full power and supplying electricity to a reverse-osmosis unit, could generate about 1,500 cubic meters of clean water per hour from brackish supplies. (Ocean water is saltier and would yield less fresh water.) GE hopes the project–one in a handful of similar R&D initiatives around the world–will yield a commercial product capable of meeting the demands of municipal water suppliers.

The project will get started in early 2007 with a scaled-down test model at Texas Tech that uses a very small, five kilowatt wind turbine.

Supplies of fresh water around Lubbock, a windy but dry area in west Texas, are running out fast. The vast Ogallala aquifer–which sits under eight Great Plains states–is being exhausted by farms, businesses, and homes far faster than it can be naturally replenished. “We are now looking at a potentially serious water problem in west Texas,” says Andy Swift, director of the wind-science engineering center at Texas Tech. “That aquifer is simply being drained faster than it recharges. It could be bled dry within 50 years.” Beneath the Ogallala aquifer, there is a brackish aquifer at depths of 1,000 to 2,000 feet that these states may have to tap.

3 comments. Share your thoughts »

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me