Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Terahertz waves have been touted as the next big thing for security and communication devices. Researchers can already generate and detect terahertz radiation, but controlling it has proved difficult. More control could mean faster wireless communication and clearer images for security scans.

Now U.S. researchers have found a way to control those waves on the fly, using a new class of materials known as metamaterials. “This is the starting point of efficient manipulation of terahertz waves,” says Hou-Tong Chen, a physicist who carried out the work with colleagues at the Los Alamos National Laboratory, NM, and the University of California in Santa Barbara.

Also known as T-rays, terahertz waves sit on the electromagnetic spectrum between infrared and microwaves, and they exhibit a range of properties that make them particularly attractive. For example, their ability to pass through clothes and yet be reflected by biological tissue offers some of the benefits of X rays without the inherent risks of using ionizing radiation. Similarly, many chemicals have been shown to exhibit unique spectral signatures in the terahertz range.

Companies such as the Toshiba spin-off Teraview, based in the United Kingdom, have started developing terahertz devices for security, medical, and pharmaceutical applications. For example, terahertz security scanners are being designed to sniff out a range of explosives by detecting specific spectral signatures. Personnel scanners capable of detecting nonmetallic concealed weapons are also in development.

But existing terahertz devices tend to either emit or detect these waves. Finding ways to affect or modify them has remained a challenge. “They are difficult to influence, mainly because most naturally occurring materials lack the useful electronic response at this frequency range,” says Chen.

Indeed, with a frequency range of between 300 and 3,000 gigahertz (0.3 to 3.0 terahertz), T-rays sit on the cusp between traditional light waves and radio waves. So for a device to have an effect on them, it would have to operate in a way that straddles both photonics and electronics.

But now Chen and his colleagues believe they have the answer: metamaterials. These are materials that exhibit electromagnetic properties dictated not by their substance so much as by their structure or electronic function.

By applying a voltage in a particular way to a standard electronic component known as a Schottky diode, the group was able to make a section of this component resonate, creating an alternating electromagnetic field. Varying the voltage altered the field. The researchers found that these field changes could increase and decrease the amplitude of the terahertz signal. (The results are published in the latest issue of the journal Nature.)

0 comments about this story. Start the discussion »

Credit: Teraview

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me