Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

In an advance that could hasten the day when energy-efficient glowing plastic sheets replace traditional lightbulbs, a method for printing microscopic lenses nearly doubles the amount of photons coming out of the materials, called organic light-emitting diodes, or OLEDs.

Stephen Forrest, an electrical engineer and vice president of research at the University of Michigan, says his technology increases the light output of the thin, flexible OLEDs by 70 percent. “They just create local curvature that allows light to pass through,” he explains.

This means that OLEDs, which are currently used for superbright color displays in a number of applications, are getting closer to being competitive as white-light sources too. “It’s a significant benefit, because the one big challenge in OLEDs is coming up with ways to get light out of them,” says Vladimir Bulovic, head of MIT’s Laboratory of Organic Optics and Electronics. “There’s a lot of light in the OLED that never makes it out.”

The benefits could be substantial. Sandia National Laboratory projects that if half of all lighting is solid-state by 2025–that is, made up of OLEDs and their technological cousin, LEDs made from inorganic semiconducting materials–it will cut worldwide power use by 120 gigawatts. That would save $100 billion a year and reduce the carbon dioxide emitted by electrical plants by 350 megatons a year. And OLEDs would offer more variety in lighting design, since they would take the form of flexible sheets.

But while LEDs are taking over a number of applications, from traffic lights to high-end architectural applications, getting enough light out of OLEDs to make them practical remains tricky. When electricity runs through the thin layers of organic polymers that make up the OLEDs, it causes the material to emit photons. The problem is that only about half of the photons ever reach the surface of the device, and the majority of those that do make it that far get turned back at the last instant. That’s because the glass or plastic substrate on which the layers of the OLED are deposited has a high index of refraction, but the open air into which the photons are traveling has a low index. When they hit the glass/air interface, about three-fifths of the photons get scattered to the edges of the glass and never reach an observer’s eye.

Researchers have tried several methods to send those photons in the desired direction, including inscribing gratings into the OLED and coating the surface with a silica gel that has a low index of refraction. Unfortunately, most of those methods caused a blurring effect or changed the color of the light when viewed at different angles. Researchers also tried larger lenses, but that required aligning the lenses with the OLED, a step that adds to the cost and complexity of manufacture.

Instead, Forrest uses microlenses, tiny hemispheres of polymer a few micrometers in diameter that direct the light forward from the OLED. He uses imprint lithography, essentially stamping a hexagonal array of lenses into a liquid polymer. Once it has hardened, the polymer layers making up the OLED can be deposited on top of the lenses. The ones he has made aren’t perfect, Forrest says, but can be improved by a company that decides to optimize the manufacturing process.

4 comments. Share your thoughts »

Credit: Steve Forrest, University of Michigan

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »