Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Good things really do come in small packages, according to a group of students at Harvard University. They constructed a tiny container–about 30 nanometers in diameter–made entirely of DNA, which could one day be used to deliver drugs or gene or protein-based therapies to specific tissues in the body.

“We know DNA is a very stable building material,” says Valerie Hoi-Ting Lau, one of the students involved in the project. “Now we’re trying to take advantage of the fact that it’s programmable.” Lau and others presented their barrel at the International Genetically Engineered Machines competition at MIT earlier this month (see “Bizarre Bacterial Creations”).

The world of DNA architecture has exploded in recent years, with scientists building two-dimensional smiley faces and complex maps, as well as three-dimensional octagons. The chemicals that make up long, winding DNA molecules bind together according to a predictable set of rules, so it’s possible to design DNA sequences that will form into various shapes.

While DNA architecture previously took years to design and construct, a method developed earlier this year provides a relatively easy way to program DNA into specific shapes (see “Do-It-Yourself Nanotech”). A single long strand of DNA is studded with shorter snippets of specially designed DNA sequences that act as the chemical equivalent of staples. Each snippet will only bind to a specific spot on the DNA molecule. Strategically placing these staples along the DNA strand allows the molecule to self-assemble into different shapes.

By adapting this method to build three-dimensional structures, the students and their advisor William Shih, a Harvard scientist who has been a leader in DNA architecture, designed a DNA sequence that would fold into a tiny, hollow container. The final structure, which is shaped like an open barrel, consists of a single DNA molecule that zigzags back and forth to create a pleated sheet. The sheet is programmed to curve around on itself, creating a double-walled cylinder. (Click here to see pictures of the barrel.)

“It was really a breakthrough result,” says Shih. Previous DNA containers, such as octagons, have had large holes in their walls, but researchers think the walls of this structure are quite solid, theoretically allowing the barrel to safely encase nanosize treasures.

1 comment. Share your thoughts »

Credit: Shawn Douglas and the Harvard iGEM Team

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me