Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

In the face of this complexity, many have decided to focus their research efforts on cutting the cost of traditional “flat-plate” systems. This is done through making them thinner, to decrease the amount of semiconductor needed, or through turning to cheaper, though less efficient, organic materials. But now several companies claim to have developed reliable systems that can be manufactured on a large scale. For example, SolFocus is making a system that combines the concentrators and cells in one sealed package by employing manufacturing techniques similar to those used to make automobile headlamps. This way they can easily be created in large quantities, according to the company’s CEO, Gary Conley.

As for the use of superefficient solar cells, critics originally said that although the cells worked well in the lab, it would be unlikely that their high efficiencies could be maintained in large-scale manufacturing. Unlike conventional solar cells, which use only one type of semiconductor (silicon), these more efficient cells, called multijunction cells, are made from layers of three types of semiconductor. This approach is meant to overcome a major limitation of silicon: although it can absorb photons from most of the spectrum in sunlight, it does so inefficiently, converting into heat, rather than into electricity, most of the energy in high-energy photons from the blue and ultraviolet parts of the spectrum. The multijunction cells use three materials designed to efficiently convert light from different parts of the spectrum, the result being that much less is converted into heat and much more into electricity.

All of the materials must be carefully engineered to work with the other materials, and they have to be assembled under very clean, well-controlled conditions. So in the 1990s, when this type of cell was still experimental, people called it “a laboratory curiosity that could never be manufactured in large volume,” Olson says. “Now Spectrolab on their production floor does better than we do in the lab. So it basically blew that myth out of the water.”

Other factors that have limited the use of concentrated solar, such as aesthetic objections to mounting concentrator systems on suburban rooftops, may largely restrict applications to commercial buildings or arrays in the desert.

But the advances that have come about, along with growing demand for solar and a shortage of silicon feedstock, have made concentrated solar photovoltaics attractive.

“There’s a lot of uncertainty in this area, where historically there’s been a lot of hype that just hasn’t been delivered,” Rogol says. “The biggest news for me is that serious solar people, over the course of the last year, have made notable commitments to concentrators.”

29 comments. Share your thoughts »

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me