Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Here’s the scenario: You pass a person on the sidewalk wearing a pair of stylish shoes. The leather is light brown, with a rounded toe and a buckle. You’d like to find a similar pair for yourself online. But searching for “shoes, light brown, rounded toe, buckle” probably won’t get you very far.

Launched today, Like.com offers a new method of searching–using pictures instead of text–that may provide a better way to shop. The visual search engine uses a picture as a starting point, and it crawls the webpages of more than 200 online stores, including Amazon.com and L.L. Bean, searching for pictures of items similar to the one you’re interested in. Currently, Like.com looks at more than two million different items in four categories: shoes, handbags, watches, and jewelry. In the next few months, the company hopes to add shirts, pants, and dresses.

“We realized that the place visual search could add the most value is the place where it’s hard to describe an item with words–where you’d want to submit a photo rather than enter text,” says Munjal Shah, creator of Like.com. Shah is also the CEO of the photo-sharing website Riya.com, a site that recognizes faces in submitted photos (see “Face Recognition Software Goes Public”).

Like.com works by using an image as a springboard for the search. Users can base their search on photos from 200 online retailers, and they can select accessories from celebrity photos in the Like.com database. Users can also indicate which characteristics, such as color, shape, or pattern, are most important to them. In addition, they can use traditional text filters to sort by brand, style, and price.

Special software developed by Like.com’s team of computer scientists recognizes similar objects by deconstructing pictures of them. Each image is broken down into 10,000 numbers that represent more than 30 features of the item–for example, the full spectrum of colors that appear in a handbag, its lumps and curves, and the glossiness of its exterior. Additionally, a user can highlight a particular feature of the item that he or she likes the most–for instance, the strap of the watch or the shape of its face–and search within that constraint. The 10,000 numbers that describe the original picture are compared with the numbers that describe the pictures on merchants’ websites.

Developing the visual search system was tricky, says Shah. He and his team had to spend a lot of time making sure that their crawler could access the high-resolution version of an image on merchants’ sites (fewer pixels don’t provide as much useful information to compare). And, if a merchant’s website offered multiple views and colors, the Web crawler needed to be able to access those as well. Like.com works best with watches and handbags, says Shah, simply because they tend to photograph consistently and there is little glare. Jewelry is more challenging for the search engine to match due to the variation in the way shiny gold and glistening diamonds are lit in photos.

1 comment. Share your thoughts »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me